934 resultados para Photonic bandgap fiber
Resumo:
The microwave photonic responses of superstructured fiber Bragg gratings in combination with dispersive fiber are investigated theoretically and experimentally. The superstructured gratings are optimized, taking account of the spectral response of the broad-band source, erbium-doped fiber amplifier, and optical tunable filter to achieve a filter response with sidelobe suppression of more than 60 dB.
Resumo:
A high frequency sensing interrogation system by using fiber Bragg grating based microwave photonic filtering is proposed, in which the wavelength measurement sensitivity is proportional to the RF modulation frequency applied to the optical signal.
Resumo:
A novel high-frequency fiber Bragg grating (FBG) sensing interrogation system by using fiber Sagnac-loop-based microwave photonic filtering is proposed and experimentally demonstrated. By adopting the microwave photonic filtering, the wavelength shift of sensing FBG can be converted into amplitude variation of the modulated electronic radio-frequency (RF) signal. In the experiment, the strain applied onto the sensing FBG has been demodulated by measuring the intensity of the recovered RF signal, and by modulating the RF signal with different frequencies, different interrogation sensitivities can be achieved.
Resumo:
In this paper a microwave photonic filter using superstructured fiber Bragg grating and dispersive fiber is investigated. A theoretical model to describe the transfer function of the filter taking into consideration the spectral width of light source is established. Experiments are carried out to verify the theoretical analysis. Both theoretical and experimental results indicate that due to chromatic dispersion the source spectral width introduces an additional power penalty to the microwave photonic response of the filter.
Resumo:
A high frequency sensing interrogation system by using fiber Bragg grating based microwave photonic filtering is proposed, in which the wavelength measurement sensitivity is proportional to the RF modulation frequency applied to the optical signal.
Resumo:
In this paper a microwave photonic filter using superstructured fiber Bragg grating and dispersive fiber is investigated. A theoretical model to describe the transfer function of the filter taking into consideration the spectral width of light source is established. Experiments are carried out to verify the theoretical analysis. Both theoretical and experimental results indicate that due to chromatic dispersion the source spectral width introduces an additional power penalty to the microwave photonic response of the filter. © 2005 Optical Society of America.
Resumo:
We consider an optical fiber with a nanoscale variation of the effective fiber radius that supports whispering gallery modes slowly propagating along the fiber, and reveal that the radius variation can be designed to support the reflectionless propagation of these modes. We show that reflectionless modulations can realize control of the transmission amplitude and temporal delay, while enabling close packing due to the absence of cross talk, in contrast to the conventional potentials.
Resumo:
In this study, two linear coplanar array antennas based on Indium Phosphide (InP) substrate are designed, presented and compared in terms of bandwidth and gain. Slot introduction in combination with coplanar structure is investigated, providing enhanced antenna gain and bandwidth at the 60 GHz frequency band. In addition the proposed array antennas are evaluated in terms of integration with a high-speed photodiode and investigated in terms of matching, providing a bandwidth that reaches 2 GHz. Moreover a potential beam forming scenario combined with photonic up-conversion scheme has been proposed. © 2013 IEEE.
Resumo:
Transient fully reconfigurable photonic circuits can be introduced at the optical fiber surface with subangstrom precision. A building block of these circuits - a 0.7Å-precise nano-bottle resonator - is experimentally created by local heating, translated, and annihilated.
Resumo:
Tunable photonic elements at the surface of an optical fiber with piezoelectric core are proposed and analyzed theoretically. These elements are based on whispering gallery modes whose propagation along the fiber is fully controlled by nanoscale variation of the effective fiber radius, which can be tuned by means of a piezoelectric actuator embedded into the core. The developed theory allows one to express the introduced effective radius variation through the shape of the actuator and the voltage applied to it. In particular, the designs of a miniature tunable optical delay line and a miniature tunable dispersion compensator are presented. The potential application of the suggested model to the design of a miniature optical buffer is also discussed.
Resumo:
Interrogation techniques for fiber Bragg grating sensor arrays need particular attention in the case of structural health monitoring applications involving dynamic strain measurement. Typically the performance of the sensing system is dependent on both the sensor type and the interrogation method employed. A novel interrogation system is proposed here that consists of different interrogation units for each sensor in the array, each unit comprising of a circulator, chirped grating and a Mach-Zehnder interferometer. We present an analysis that consists of tracking the spectral changes as the light passes through various elements in the interrogation system. This is expected to help in the optimization of sensor and interrogation elements leading to improved performance of the health monitoring system.
Resumo:
In this paper we report a novel hydrogel functionalized optical Fiber Bragg Grating (FBG) sensor based on chemo-mechanical-optical sensing, and demonstrate its specific application in pH activated process monitoring. The sensing mechanism is based on the stress due to ion diffusion and polymer phase transition which produce strain in the FBG. This results in shift in the Bragg wavelength which is detected by an interrogator system. A simple dip coating method to coat a thin layer of hydrogel on the FBG has been established. The gel consists of sodium alginate and calcium chloride. Gel formation is observed in real-time by continuously monitoring the Bragg wavelength shift. We have demonstrated pH sensing in the range of pH of 2 to 10. Another interesting phenomenon is observed by swelling and deswelling of FBG functionalized with hydrogel by a sequence of alternate dipping between acidic and base solutions. It is observed that the Bragg wavelength undergoes reversible and repeatable pH dependent switching.
Resumo:
Non-invasive, real-time dynamic monitoring of pressure inside a column with the aid of Fiber Bragg Grating (FBG) sensor is presented in the present work. A bare FBG sensor is adhered on the circumference of a pressure column normal to its axis, which has the ability to acquire the hoop strain induced by the pressure variation inside the column. Pressure induced hoop strain response obtained using FBG sensor is validated against the pressure measurements obtained from conventional pressure gauge. Further, a protrusion setup on the outer surface of the column has been proposed over which a secondary FBG sensor is bonded normal to its axis, in order to increase the gauge length of this FBG sensor. This is carried out in order to validate the variation in sensitivity of the protrusion bonded FBG sensor compared to the bare FBG sensor bonded over the surface. A comparative study is done between the two FBG sensors and a conventional pressure gauge in order to establish the capacity of FBG sensor obtained hoop strain response for pressure monitoring inside the column.
Resumo:
We demonstrate passive mode-locking of a bismuth-doped fiber laser using a singlewall nanotube-based saturable absorber. Stable operation in the all-normal dispersion and average soliton regime is obtained, with an all-fiber integrated format. © 2010 Optical Society of America.