910 resultados para Photonic bandgap


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an entanglement purification protocol for photonic mixed entangled states based on the two-mode polarization nondemolition parity detectors. Without the use of the controlled-NOT (CNOT) operations, the efficiency of our protocol can nearly approach that of the CNOT protocol. The total successful probability of our protocol can be nearly enhanced to the quantity twice as large as that of the linear-optics-based protocol. Besides, our protocol adopts common photon detectors rather than the sophisticated single-photon detectors required in the linear-optics-based protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical investigation of the nonlinear copropagation of two optical pulses of different frequencies in a photonic crystal fiber is presented. Different phenomena are observed depending on whether the wavelength of the signal pulse is located in the normal or the anomalous dispersion region. In particular, it is found that the phenomenon of pulse trapping occurs when the signal wavelength is located in the normal dispersion region while the pump wavelength is located in the anomalous dispersion region. The signal pulse suffers cross-phase modulation by the Raman shifted soliton pulse and it is trapped and copropagates with the Raman soliton pulse along the fiber. As the input peak power of the pump pulse is increased, the red-shift of the Raman soliton is considerably enhanced with the simultaneous further blue-shift of the trapped pulse to satisfy the condition of group velocity matching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of Ring Opening Metathesis Polymerization has allowed the world of block copolymers to expand into brush block copolymers. Brush block copolymers consist of a polymer backbone with polymeric side chains, forcing the backbone to hold a stretched conformation and giving it a worm-like shape. These brush block copolymers have a number of advantages over tradition block copolymers, including faster self-assembly behavior, larger domain sizes, and much less entanglement. This makes them an ideal candidate in the development of a bottom-up approach to forming photonic crystals. Photonic crystals are periodic nanostructures that transmit and reflect only certain wavelengths of light, forming a band gap. These are used in a number of coatings and other optical uses. One and two dimensional photonic crystals are commercially available, though are often expensive and difficult to manufacture. Previous work has focused on the creation of one dimensional photonic crystals from brush block copolymers. In this thesis, I will focus on the synthesis and characterization of asymmetric brush block copolymers for self-assembly into two and three dimensional photonic crystals. Three series of brush block copolymers were made and characterized by Gel Permeation Chromatography and Nuclear Magnetic Resonance spectroscopy. They were then made into films through compressive thermal annealing and characterized by UV-Vis Spectroscopy and Scanning Electron Microscopy. Evidence of non-lamellar structures were seen, indicating the first reported creation of two or three dimensional photonic crystals from brush block copolymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acoustic-optics programmable dispersive filter (AOPDF) was first employed to actively control the linearly polarized femtosecond pump pulse frequency chirp for supercontinuum (SC) generation in a high birefringence photonic crystal fiber (PCF). By accurately controlling the second order phase distortion and polarization direction of incident pulses, the output SC spectrum can be tuned to various spectral energy distributions and bandwidths. The pump pulse energy and bandwidth are preserved in our experiment. It is found that SC with broader bandwidth can be generated with positive chirped pump pulses except when the chirp value is larger than the optimal value, and the same optimal value exists for the pump pulses polarized along the two principal axes. With optimal positive chirp, more than 78% of the pump energy can be transferred to below 750 nm. Otherwise, negative chirp will weaken the blue-shift broadening and the SC bandwidth. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated four unique methods for achieving scalable, deterministic integration of quantum emitters into ultra-high Q{V photonic crystal cavities, including selective area heteroepitaxy, engineered photoemission from silicon nanostructures, wafer bonding and dimensional reduction of III-V quantum wells, and cavity-enhanced optical trapping. In these areas, we were able to demonstrate site-selective heteroepitaxy, size-tunable photoluminescence from silicon nanostructures, Purcell modification of QW emission spectra, and limits of cavity-enhanced optical trapping designs which exceed any reports in the literature and suggest the feasibility of capturing- and detecting nanostructures with dimensions below 10 nm. In addition to process scalability and the requirement for achieving accurate spectral- and spatial overlap between the emitter and cavity, these techniques paid specific attention to the ability to separate the cavity and emitter material systems in order to allow optimal selection of these independently, and eventually enable monolithic integration with other photonic and electronic circuitry.

We also developed an analytic photonic crystal design process yielding optimized cavity tapers with minimal computational effort, and reported on a general cavity modification which exhibits improved fabrication tolerance by relying exclusively on positional- rather than dimensional tapering. We compared several experimental coupling techniques for device characterization. Significant efforts were devoted to optimizing cavity fabrication, including the use of atomic layer deposition to improve surface quality, exploration into factors affecting the design fracturing, and automated analysis of SEM images. Using optimized fabrication procedures, we experimentally demonstrated 1D photonic crystal nanobeam cavities exhibiting the highest Q/V reported on substrate. Finally, we analyzed the bistable behavior of the devices to quantify the nonlinear optical response of our cavities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sun has the potential to power the Earth's total energy needs, but electricity from solar power still constitutes an extremely small fraction of our power generation because of its high cost relative to traditional energy sources. Therefore, the cost of solar must be reduced to realize a more sustainable future. This can be achieved by significantly increasing the efficiency of modules that convert solar radiation to electricity. In this thesis, we consider several strategies to improve the device and photonic design of solar modules to achieve record, ultrahigh (> 50%) solar module efficiencies. First, we investigate the potential of a new passivation treatment, trioctylphosphine sulfide, to increase the performance of small GaAs solar cells for cheaper and more durable modules. We show that small cells (mm2), which currently have a significant efficiency decrease (~ 5%) compared to larger cells (cm2) because small cells have a higher fraction of recombination-active surface from the sidewalls, can achieve significantly higher efficiencies with effective passivation of the sidewalls. We experimentally validate the passivation qualities of treatment by trioctylphosphine sulfide (TOP:S) through four independent studies and show that this facile treatment can enable efficient small devices. Then, we discuss our efforts toward the design and prototyping of a spectrum-splitting module that employs optical elements to divide the incident spectrum into different color bands, which allows for higher efficiencies than traditional methods. We present a design, the polyhedral specular reflector, that has the potential for > 50% module efficiencies even with realistic losses from combined optics, cell, and electrical models. Prototyping efforts of one of these designs using glass concentrators yields an optical module whose combined spectrum-splitting and concentration should correspond to a record module efficiency of 42%. Finally, we consider how the manipulation of radiatively emitted photons from subcells in multijunction architectures can be used to achieve even higher efficiencies than previously thought, inspiring both optimization of incident and radiatively emitted photons for future high efficiency designs. In this thesis work, we explore novel device and photonic designs that represent a significant departure from current solar cell manufacturing techniques and ultimately show the potential for much higher solar cell efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we theoretically study the left-handed behaviors in a two-dimensional triangular photonic crystal made of elliptical rods in air. An absolute left-handed region is found in the second photonic band by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Typical left-handed behaviors such as negative refraction, flat superlensing and plano-concave lensing are demonstrated by the finite-difference time-domain simulations. These behaviors are also compared with the quasi-negative refraction and the resulted focusing effects in a square-lattice two-dimensional photonic crystal. (c) 2005 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We systematically investigate the square-lattice dielectric photonic crystals that have been used to demonstrate flat slab imaging experimentally. A right-handed Bloch mode is found in the left-handed frequency region by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Using the multiple scattering theory, numerical simulations demonstrate that the left-handed mode and the right-handed mode are excited simultaneously by a point source and result in two kinds of transmitted waves. Impacted by the evanescent waves, superposition of these transmitted waves brings on complicated near field distributions such as the so-called imaging and its disappearance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contrast to previous two-dimensional coated photonic crystals, in this paper we propose a left-handed one that is made of dielectric tubes arranged in a close-packed hexagonal lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. Negative refraction and its resulting focusing are investigated by dispersion characteristic analysis and numerical simulation of the field pattern. With proper modification at the interface, the image is improved. With better isotropy than that with noncircular rods, planoconcave lenses made by dielectric tubes focus a Gaussian beam exactly at R//n - 1/.