118 resultados para Photobleaching


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNAi ist ein bedeutendes Werkzeug zur Funktionsanalyse von Genen und hat großes Potential für den Einsatz in der Therapie. Obwohl effiziente Knockdowns in der Zellkultur erzielt werden, erweist sich eine in vivo Anwendung als schwierig. Die großen Hürden sind dabei der Transport der siRNA ins Zielgewebe und deren voranschreitende Degradierung.rnMarkierte siRNA kann sowohl zur eigenen Integritätsmessung als auch zur Lokalisierung verwendet werden. Zwei Farbstoffe an den jeweiligen 3’- bzw. -5’-Enden des Sense- bzw. Antisense-Stranges erzeugen ein robustes FRET-System (Hirsch et al. 2012). Das Verhältnis von FRET- zu Donor-Signal, das R/G-Ratio, dient zur sensitiven Klassifizierung des Integritätslevels einer siRNA Probe (Järve et al. 2007; Hirsch et al. 2011; Kim et al. 2010). Mit diesem System kann eine Degradierung von weniger als 5 % in der Küvette und in Zellen nachgewiesen werden.rnDie vorliegende Arbeit beschäftigt sich mit der Evaluierung von potentiellen FRET Farbstoffpaaren hinsichtlich deren Eignung für in vitro und in vivo Anwendung. Verschiedenste FRET-Paare, die das gesamte sichtbare Spektrum abdecken, wurden evaluiert und ermöglichen nun die Auswahl eines geeigneten Paares für die jeweilige Anwendung oder Kombination mit anderen Farbstoffen.rnMit Hilfe von Alexa555/Atto647N siRNA wurde ein erfolgreicher Einschluss von siRNA in Liposomen beobachtet. Eine anschließende Evaluierung der RNase-Protektion ergab für Liposomen, Nanohydrogele und kationische Peptide hervorragende protektive Eigenschaften. Basierend auf den Ergebnisse können diese und andere Transportsysteme nun für eine zelluläre Aufnahme optimiert werden.rnAtto488/Atto590 zeigte die besten Eigenschaften für Echtzeit-Integritätsmessungen in der Lebendzellmikroskopie. Verringerte Bleicheigenschaften und minimaler spektraler “Cross-Talk” ermöglichten es, transfizierte Zellen über einen Zeitraum von bis zu 8 Stunden zu beobachten. Mittels Atto488/Atto590 siRNA wurde die Einschleusung und Freisetzung in Zellen in Echtzeit untersucht. Dabei konnten Freisetzung und Verteilung in einzelnen Zellen beobachtet und analysiert werden. rnAuf eine anfängliche Phase mit hoher Freisetzungsrate folgte eine Phase mit geringerer Rate für den restlichen Beobachtungszeitraum. Die durchschnittliche Verweildauer im Zytosol betrug 24 und 58 Minuten, wobei zwischen lang- und kurzanhaltenden Ereignissen unterschieden werden konnte. Obwohl ein Import von siRNA in den Zellkern beobachtet wurde, konnte kein Schema bzw. genauer Zeitpunkt, in Bezug auf den Transfektionszeitraum für diese Ereignisse bestimmt werden. Die beobachteten Freisetzungsprozesse fanden sporadisch statt und Änderungen in der zellulären Verteilung geschahen innerhalb von wenigen Minuten. Einmal freigesetzte siRNA verschwand mit der Zeit wieder aus dem Zytosol und es blieben nur kleine Aggregate von siRNA mit immer noch geringer Integrität zurück.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BODIPY (4,4-Difluoro-3a,4a-diaza-s-indacene) dyes have gained lots of attention in application of fluorescence sensing and imaging in recent years because they possess many distinctive and desirable properties such as high extinction coefficient, narrow absorption and emission bands, high quantum yield and low photobleaching effect. However, most of BODIPY-based fluorescent probes have very poor solubilities in aqueous solution, emit less than 650 nm fluorescence that can cause cell and tissue photodamages compared with bio-desirable near infrared (650-900 nm) light. These undesirable properties extremely limit the applications of BODIPY-based fluorescent probes in sensing and imaging applications. In order to overcome these drawbacks, we have developed a very effective strategy to prepare a series of neutral highly water- soluble BODIPY dyes by enhancing the water solubilities of BODIPY dyes via incorporation of tri(ethylene glycol)methyl ether (TEG) and branched oligo(ethylene glycol)methyl ether (BEG) residues onto BODIPY dyes at 1,7-, 2,6-, 3,5-, 4- and meso- positions. We also have effectively tuned absorptions and emissions of BOIDPY dyes to red, deep red and near infrared regions via significant extension of π-conjugation of BODIPY dyes by condensation reactions of aromatic aldehydes with 2,6-diformyl BODIPY dyes at 1,3,5,7-positions. Based on the foundation that we built for enhancing water solubility and tuning wavelength, we have designed and developed a series of water-soluble, BODIPY-based fluorescent probes for sensitive and selective sensing and imaging of cyanide, Zn (II) ions, lysosomal pH and cancer cells. We have developed three BODIPY-based fluorescent probes for sensing of cyanide ions by incorporating indolium moieties onto the 6-position of TEG- or BEG-modified BOIDPY dyes. Two of them are highly water-soluble. These fluorescent probes showed selective and fast ratiometric fluorescent responses to cyanide ions with a dramatic fluorescence color change from red to green accompanying a significant increase in fluorescent intensity. The detection limit was measured as 0.5 mM of cyanide ions. We also have prepared three highly water-soluble fluorescent probes for sensing of Zn (II) ions by introducing dipicoylamine (DPA, Zn ion chelator) onto 2- and/or 6-positions of BEG-modified BODIPY dyes. These probes showed selective and sensitive responses to Zn (II) ion in the range from 0.5 mM to 24 mM in aqueous solution at pH 7.0. Particularly, one of the probes displayed ratiometric responses to Zn (II) ions with fluorescence quenching at 661 nm and fluorescence enhancement at 521 nm. This probe has been successfully applied to the detection of intracellular Zn (II) ions inside the living cells. Then, we have further developed three acidotropic, near infrared emissive BODIPY- based fluorescent probes for detection of lysosomal pH by incorporating piperazine moiety at 3,5-positions of TEG- or BEG-modified BODIPY dyes as parts of conjugation. The probes have low auto-fluorescence at physiological neutral condition while their fluorescence intensities will significant increase at 715 nm when pH shift to acidic condition. These three probes have been successfully applied to the in vitro imaging of lysosomes inside two types of living cells. At the end, we have synthesized one water- soluble, near infrared emissive cancer cell targetable BODIPY-based fluorescent polymer bearing cancer homing peptide (cRGD) residues for cancer cell imaging applications. This polymer exhibited excellent water-solubility, near infrared emission (712 nm), good biocompatibility. It also showed low nonspecific interactions to normal endothelial cells and can effectively detect breast tumor cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to examine whether variability in the shape of dendritic spines affects protein movement within the plasma membrane. Using a combination of confocal microscopy and the fluorescence loss in photobleaching technique in living hippocampal CA1 pyramidal neurons expressing membrane-linked GFP, we observed a clear correlation between spine shape parameters and the diffusion and compartmentalization of membrane-associated proteins. The kinetics of membrane-linked GFP exchange between the dendritic shaft and the spine head compartment were slower in dendritic spines with long necks and/or large heads than in those with short necks and/or small heads. Furthermore, when the spine area was reduced by eliciting epileptiform activity, the kinetics of protein exchange between the spine compartments exhibited a concomitant decrease. As synaptic plasticity is considered to involve the dynamic flux by lateral diffusion of membrane-bound proteins into and out of the synapse, our data suggest that spine shape represents an important parameter in the susceptibility of synapses to undergo plastic change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oligomeric assembly of neurotransmitter transporters is a prerequisite for their export from the endoplasmic reticulum (ER) and their subsequent delivery to the neuronal synapse. We previously identified mutations, e.g., in the gamma-aminobutyric acid (GABA) transporter-1 (GAT1), which disrupted assembly and caused retention of the transporter in the ER. Using one representative mutant, GAT1-E101D, we showed here that ER retention was due to association of the transporter with the ER chaperone calnexin: interaction with calnexin led to accumulation of GAT1 in concentric bodies corresponding to previously described multilamellar ER-derived structures. The transmembrane domain of calnexin was necessary and sufficient to direct the protein into these concentric bodies. Both yellow fluorescent protein-tagged versions of wild-type GAT1 and of the GAT1-E101D mutant remained in disperse (i.e., non-aggregated) form in these concentric bodies, because fluorescence recovered rapidly (t(1/2) approximately 500 ms) upon photobleaching. Fluorescence energy resonance transfer microscopy was employed to visualize a tight interaction of GAT1-E101D with calnexin. Recognition by calnexin occurred largely in a glycan-independent manner and, at least in part, at the level of the transmembrane domain. Our findings are consistent with a model in which the transmembrane segment of calnexin participates in chaperoning the inter- and intramolecular arrangement of hydrophobic segment in oligomeric proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of the FtsZ ring (Z ring) in Escherichia coli is the first step in assembly of the divisome, a molecular machine composed of 14 known proteins which are all required for cell division. Although the biochemical functions of most divisome proteins are unknown, several of these have overlapping roles in ensuring that the Z ring assembles at the cytoplasmic membrane and is active. ^ We identified a single amino acid change in FtsA, R286W, renamed FtsA*, that completely bypasses the requirement for ZipA in cell division. This and other data suggest that FtsA* is a hyperactive form of FtsA that can replace the multiple functions normally assumed by ZipA, which include stabilization of Z rings, recruitment of downstream cell division proteins, and anchoring the Z ring to the membrane. This is the first example of complete functional replacement of an essential prokaryotic cell division protein by another. ^ Cells expressing ftsA* with a complete deletion of ftsK are viable and divide, although many of these ftsK null cells formed multiseptate chains, suggesting a role in cell separation for FtsK. In addition, strains expressing extra ftsAZ, ftsQ, ftsB, zipA or ftsN, were also able to survive and divide in the absence of ftsK. The cytoplasmic and transmembrane domains of FtsQ were sufficient to allow viability and septum formation to ftsK deleted strains. These findings suggest that FtsK is normally involved in stabilizing the divisome and shares functional overlap with other cell division proteins. ^ As well as permitting the removal of other divisome components, the presence of FtsA* in otherwise wild-type cells accelerated Z-ring assembly, which resulted in a significant decrease in the average length of cells. In support of its role in Z-ring stability, FtsA* suppressed the cell division inhibition caused by overexpressing FtsZ. FtsA* did not affect FtsZ turnover within the Z ring as measured by fluorescence recovery after photobleaching. Turnover of FtsA* in the ring was somewhat faster than wild-type FtsA. Yeast two-hybrid data suggest that FtsA* has an increased affinity for FtsZ relative to wild-type FtsA. These results indicate that FtsA* interacts with FtsZ more strongly, and its enhancement of Z ring assembly may explain why FtsA* can permit survival of cells lacking ZipA or FtsK.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 × 10−10 cm2/s. A coefficient only slightly larger (7.1 × 10−10 cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intracellular Ca2+ receptor calmodulin (CaM) coordinates responses to extracellular stimuli by modulating the activities of its various binding proteins. Recent reports suggest that, in addition to its familiar functions in the cytoplasm, CaM may be directly involved in rapid signaling between cytoplasm and nucleus. Here we show that Ca2+-dependent nuclear accumulation of CaM can be reconstituted in permeabilized cells. Accumulation was blocked by M13, a CaM antagonist peptide, but did not require cytosolic factors or an ATP regenerating system. Ca2+-dependent influx of CaM into nuclei was not blocked by inhibitors of nuclear localization signal-mediated nuclear import in either permeabilized or intact cells. Fluorescence recovery after photobleaching studies of CaM in intact cells showed that influx is a first-order process with a rate constant similar to that of a freely diffusible control molecule (20-kDa dextran). Studies of CaM efflux from preloaded nuclei in permeablized cells revealed the existence of three classes of nuclear binding sites that are distinguished by their Ca2+-dependence and affinity. At high [Ca2+], efflux was enhanced by addition of a high affinity CaM-binding protein outside the nucleus. These data suggest that CaM diffuses freely through nuclear pores and that CaM-binding proteins in the nucleus act as a sink for Ca2+-CaM, resulting in accumulation of CaM in the nucleus on elevation of intracellular free Ca2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescein-labeled oligodeoxynucleotides (oligos) were introduced into cultured rat myoblasts, and their molecular movements inside the nucleus were studied by fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). FCS revealed that a large fraction of both intranuclear oligo(dT) (43%) and oligo(dA) (77%) moves rapidly with a diffusion coefficient of 4 × 10−7 cm2/s. Interestingly, this rate of intranuclear oligo movement is similar to their diffusion rates measured in aqueous solution. In addition, we detected a large fraction (45%) of the intranuclear oligo(dT), but not oligo(dA), diffusing at slower rates (≤1 × 10−7 cm2/s). The amount of this slower-moving oligo(dT) was greatly reduced if the oligo(dT) was prehybridized in solution with (unlabeled) oligo(dA) prior to introduction to cells, presumably because the oligo(dT) was then unavailable for subsequent hybridization to endogenous poly(A) RNA. The FCS-measured diffusion rate for much of the slower oligo(dT) population approximated the diffusion rate in aqueous solution of oligo(dT) hybridized to a large polyadenylated RNA (1.0 × 10−7 cm2/s). Moreover, this intranuclear movement rate falls within the range of calculated diffusion rates for an average-sized heterogeneous nuclear ribonucleoprotein particle in aqueous solution. A subfraction of oligo(dT) (15%) moved over 10-fold more slowly, suggesting it was bound to very large macromolecular complexes. Average diffusion coefficients obtained from FRAP experiments were in agreement with the FCS data. These results demonstrate that oligos can move about within the nucleus at rates comparable to those in aqueous solution and further suggest that this is true for large ribonucleoprotein complexes as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel imaging technology, high-speed microscopy, has been used to visualize the process of GLUT4 translocation in response to insulin in single 3T3-L1 adipocytes. A key advantage of this technology is that it requires extremely low light exposure times, allowing the quasi-continuous capture of information over 20–30 min without photobleaching or photodamage. The half-time for the accumulation of GLUT4-eGFP (enhanced green fluorescent protein) at the plasma membrane in a single cell was found to be of 5–7 min at 37°C. This half-time is substantially longer than that of exocytic vesicle fusion in neuroendocrine cells, suggesting that additional regulatory mechanisms are involved in the stimulation of GLUT4 translocation by insulin. Analysis of four-dimensional images (3-D over time) revealed that, in response to insulin, GLUT4-eGFP-enriched vesicles rapidly travel from the juxtanuclear region to the plasma membrane. In nontransfected adipocytes, impairment of microtubule and actin filament function inhibited insulin-stimulated glucose transport by 70 and 50%, respectively. When both filament systems were impaired insulin-stimulated glucose transport was completely inhibited. Taken together, the data suggest that the regulation of long-range motility of GLUT4-containing vesicles through the interaction with microtubule- and actin-based cytoskeletal networks plays an important role in the overall effect of insulin on GLUT4 translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During skeletal muscle differentiation, the Golgi complex (GC) undergoes a dramatic reorganization. We have now visualized the differentiation and fusion of living myoblasts of the mouse muscle cell line C2, permanently expressing a mannosidase-green fluorescent protein (GFP) construct. These experiments reveal that the reorganization of the GC is progressive (1–2 h) and is completed before the cells start fusing. Fluorescence recovery after photobleaching (FRAP), immunofluorescence, and immunogold electron microscopy demonstrate that the GC is fragmented into elements localized near the endoplasmic reticulum (ER) exit sites. FRAP analysis and the ER relocation of endogenous GC proteins by phospholipase A2 inhibitors demonstrate that Golgi-ER cycling of resident GC proteins takes place in both myoblasts and myotubes. All results support a model in which the GC reorganization in muscle reflects changes in the Golgi-ER cycling. The mechanism is similar to that leading to the dispersal of the GC caused, in all mammalian cells, by microtubule-disrupting drugs. We propose that the trigger for the dispersal results, in muscle, from combined changes in microtubule nucleation and ER exit site localization, which place the ER exit sites near microtubule minus ends. Thus, changes in GC organization that initially appear specific to muscle cells, in fact use pathways common to all mammalian cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a fluorescence recovery after photobleaching (FRAP) technique to measure radial diffusion of myoglobin and other proteins in single skeletal and cardiac muscle cells. We compare the radial diffusivities, Dr (i.e., diffusion perpendicular to the long fiber axis), with longitudinal ones, Dl (i.e., parallel to the long fiber axis), both measured by the same technique, for myoglobin (17 kDa), lactalbumin (14 kDa), and ovalbumin (45 kDa). At 22°C, Dl for myoglobin is 1.2 × 10−7 cm2/s in soleus fibers and 1.1 × 10−7 cm2/s in cardiomyocytes. Dl for lactalbumin is similar in both cell types. Dr for myoglobin is 1.2 × 10−7 cm2/s in soleus fibers and 1.1 × 10−7 cm2/s in cardiomyocytes and, again, similar for lactalbumin. Dl and Dr for ovalbumin are 0.5 × 10−7 cm2/s. In the case of myoglobin, both Dl and Dr at 37°C are about 80% higher than at 22°C. We conclude that intracellular diffusivity of myoglobin and other proteins (i) is very low in striated muscle cells, ≈1/10 of the value in dilute protein solution, (ii) is not markedly different in longitudinal and radial direction, and (iii) is identical in heart and skeletal muscle. A Krogh cylinder model calculation holding for steady-state tissue oxygenation predicts that, based on these myoglobin diffusivities, myoglobin-facilitated oxygen diffusion contributes 4% to the overall intracellular oxygen transport of maximally exercising skeletal muscle and less than 2% to that of heart under conditions of high work load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluid and macromolecule secretion by submucosal glands in mammalian airways is believed to be important in normal airway physiology and in the pathophysiology of cystic fibrosis (CF). An in situ fluorescence method was applied to measure the ionic composition and viscosity of freshly secreted fluid from airway glands. Fragments of human large airways obtained at the time of lung transplantation were mounted in a humidified perfusion chamber and the mucosal surface was covered by a thin layer of oil. Individual droplets of secreted fluid were microinjected with fluorescent indicators for measurement of [Na+], [Cl−], and pH by ratio imaging fluorescence microscopy and viscosity by fluorescence recovery after photobleaching. After carbachol stimulation, 0.1–0.5 μl of fluid accumulated in spherical droplets at gland orifices in ≈3–5 min. In gland fluid from normal human airways, [Na+] was 94 ± 8 mM, [Cl−] was 92 ± 12 mM, and pH was 6.97 ± 0.06 (SE, n = 7 humans, more than five glands studied per sample). Apparent fluid viscosity was 2.7 ± 0.3-fold greater than that of saline. Neither [Na+] nor pH differed in gland fluid from CF airways, but viscosity was significantly elevated by ≈2-fold compared to normal airways. These results represent the first direct measurements of ionic composition and viscosity in uncontaminated human gland secretions and indicate similar [Na+], [Cl−], and pH to that in the airway surface liquid. The elevated gland fluid viscosity in CF may be an important factor promoting bacterial colonization and airway disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable mammalian cell lines harboring a synthetic bovine opsin gene have been derived from the suspension-adapted HEK293 cell line. The opsin gene is under the control of the immediate-early cytomegalovirus promoter/enhancer in an expression vector that also contains a selectable marker (Neo) governed by a relatively weak promoter. The cell lines expressing the opsin gene at high levels are selected by growth in the presence of high concentrations of the antibiotic geneticin. Under the conditions used for cell growth in suspension, opsin is produced at saturated culture levels of more than 2 mg/liter. After reconstitution with 11-cis-retinal, rhodopsin is purified to homogeneity in a single step by immunoaffinity column chromatography. Rhodopsin thus prepared (> 90% recovery at concentrations of up to 15 microM) is indistinguishable from rhodopsin purified from bovine rod outer segments by the following criteria: (i) UV/Vis absorption spectra in the dark and after photobleaching and the rate of metarhodopsin II decay, (ii) initial rates of transducin activation, and (iii) the rate of phosphorylation by rhodopsin kinase. Although mammalian cell opsin migrates slower than rod outer segment opsin on SDS/polyacrylamide gels, presumably due to a different N-glycosylation pattern, their mobilities after deglycosylation are identical. This method has enabled the preparation of several site-specific mutants of bovine opsin in comparable amounts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have devised a microspectroscopic strategy for assessing the intracellular (re)distribution and the integrity of the primary structure of proteins involved in signal transduction. The purified proteins are fluorescent-labeled in vitro and reintroduced into the living cell. The localization and molecular state of fluorescent-labeled protein kinase C beta I isozyme were assessed by a combination of quantitative confocal laser scanning microscopy, fluorescence lifetime imaging microscopy, and novel determinations of fluorescence resonance energy transfer based on photobleaching digital imaging microscopy. The intensity and fluorescence resonance energy transfer efficiency images demonstrate the rapid nuclear translocation and ensuing fragmentation of protein kinase C beta I in BALB/c3T3 fibroblasts upon phorbol ester stimulation, and suggest distinct, compartmentalized roles for the regulatory and catalytic fragments.