313 resultados para Phenylethanolamine-n-methyltransferase
Resumo:
Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high-density microarrays and sequenced all known protein-coding genes and microRNA genes using Sanger sequencing in a set of 22 MBs. We found that, on average, each tumor had 11 gene alterations, fewer by a factor of 5 to 10 than in the adult solid tumors that have been sequenced to date. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone-lysine N-methyltransferase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.
Resumo:
In the present study, the molecular karyotypes of 12 KP1(+) and KP1(-) Trypanosoma rangeli strains were determined and 10 different molecular markers were hybridized to the chromosomes of the parasite, including seven obtained from T. rangeli [ubiquitin hydrolase (UH), a predicted serine/threonine protein kinase (STK), hexose transporter, hypothetical protein, three anonymous sequences] and three from Trypanosoma cruzi [ubiquitin-conjugating enzyme E2 (UBE2), ribosomal RNA methyltransferase (rRNAmtr), proteasome non-ATPase regulatory subunit 6 (PSMD6)]. Despite intraspecific variation, analysis of the karyotype profiles permitted the division of the T rangeli strains into two groups coinciding with the KP1(+) and KP1(-) genotypes. Southern blot hybridization showed that, except for the hexose transporter probe, all other probes produced distinct patterns able to differentiate the KP1(+) and KP1(-) genotypes. The UH, STK and An-1A04 probes exclusively hybridized to the chromosomes of KP1(+) strains and can be used as markers of this group. In addition, the UBE2, rRNAmtr and PSMD6 markers, which are present in a conserved region in all trypanosomatid species sequenced so far, co-hybridized to the same T. rangeli chromosomal bands, suggesting the occurrence of gene synteny in these species. The finding of distinct molecular karyotypes in KP1(+) and KP1 (-) strains of T rangeli is noteworthy and might be used as a new approach to the study of genetic variability in this parasite. Together with the Southern blot hybridization results, these findings demonstrate that differences at the kDNA level might be associated with variations in nuclear DNA. (c) 2009 Elsevier BY. All rights reserved.
Resumo:
The aim of the present study was to examine the effects of creatine supplementation on liver fat accumulation induced by a high-fat diet in rats. Rats were fed 1 of 3 different diets for 3 wk: a control liquid diet (C), a high-fat liquid diet (HF), or a high-fat liquid diet supplemented with creatine (HFC). The C and HF diets contained, respectively, 35 and 71% of energy derived from fat. Creatine supplementation involved the addition of 1% (wt:v) of creatine monohydrate to the liquid diet. The HF diet increased total liver fat concentration, liver TG, and liver TBARS and decreased the hepatic S-adenosylmethionine (SAM) concentration. Creatine supplementation normalized all of these perturbations. Creatine supplementation significantly decreased the renal activity of L-arginine:glycine amidinotransferase and plasma guanidinoacetate and prevented the decrease in hepatic SAM concentration in rats fed the HF diet. However, there was no change in either the phosphatidylcholine:phosphatidylethanolamine (PE) ratio or PE N-methyltransferase activity. The HF diet decreased mRNA for PPAR as well as 2 of its targets, carnitine palmitoyltransferase and long-chain acylCoA dehydrogenase. Creatine supplementation normalized these mRNA levels. In conclusion, creatine supplementation prevented the fatty liver induced by feeding rats a HF diet, probably by normalization of the expression of key genes of beta-oxidation. J. Nutr. 141: 1799-1804, 2011.
Resumo:
Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silica analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.
Resumo:
Much of the individual variation in drug response is due to genetic drug metabolic polymorphisms. Clinically relevant examples include acetylator status; cytochrome P450 2D6, 2C9 and 2C19 polymorphisms; and thiopurine methyltransferase deficiency. It is important to be aware of which drugs are subject to pharmacogenetic variability. In the future, population-based pharmacogenetic testing will allow more individualized drug treatment and will avoid the current empiricism.
Resumo:
Ovarian adenocarcinomas develop as the result of multiple genetic, and epigenetic changes in the precursor ovarian surface epithelial (OSE) cells which result in a malignant phenotype. We investigated changes in gene expression in ovarian adenocarcinoma using a cDNA array containing 588 known human genes. We found that intercellular adhesion molecule-1 (ICAM-1) was expressed at lower levels in the ovarian tumour cell lines OAW42, PEO1 and JAM than in the immortalised human ovarian surface epithelial cell line HOSE 17.1. Further investigation revealed ICAM-1 was expressed in the surface epithelium of normal ovaries and both mRNA and protein expression levels were reduced in the majority of ovarian adenocarcinoma cell lines and primary tumours. ICAM-1 expression was increased in 8/8 cell lines treated with the de novo methyltransferase inhibitor 5-aza-2'-deoxycytidiine, indicating that methylation of CpG islands may play a role in the down-regulation of its expression in primary tumours. 'There was a significant association between patients whose tumours expressed ICAM-1 and survival (P = 0.03), suggesting that expression levels of ICAM-1 may have clinical relevance. (C) 2001 Cancer Research Campaign.
Resumo:
An understanding of the mechanisms that explain the initiation and early evolution of colorectal cancer should facilitate the development of new approaches to effective prevention and intervention. This review highlights deficiencies in the current model for colorectal neoplasia in which APC mutation is placed at the point of initiation. Other genes implicated in the regulation of apoptosis and DNA repair may underlie the early development of colorectal cancer. Inactivation of these genes may occur not by mutation or loss but through silencing mediated by methylation of the gene's promoter region. hMLH1 and MGMT are examples of DNA repair genes that are silenced by methylation. Loss of expression of hMLH1 and MGMT protein has been demonstrated immunohistochemically in serrated polyps. Multiple lines of evidence point to a serrated pathway of neoplasia that is driven by inhibition of apoptosis and the subsequent inactivation of DNA repair genes by promoter methylation. The earliest lesions in this pathway are aberrant crypt foci (ACF). These may develop Into hyperplastic polyps or transform while still of microscopic size into admixed polyps, serrated adenomas, or traditional adenomas. Cancers developing from these lesions may show high- or low-level microsatellite instability (MSI-H and MSI-L, respectively) or may be microsatellite stable (MSS). The suggested clinical model for this alternative pathway is the condition hyperplastic polyposis. If colorectal cancer is a heterogeneous disease comprising discrete subsets that evolve through different pathways, it is evident that these subsets will need to be studied individually in the future.
Resumo:
Background: Polymorphisms located in genes involved in the metabolism of folate and some methyl-related nutrients are implicated in colorectal cancer (CRC). Objective: We evaluated the association of 3 genetic polymorphisms [C677T MTHFR (methylene tetrahydrofolate reductase), A2756G MTR (methionine synthase), and C1420T SHMT (serine hydroxymethyltransferase)] with the intake of methyl-donor nutrients in CRC risk. Design: Patients withCRC(n 196) and healthy controls (n 200) matched for age and sex were evaluated for intake of methyl-donor nutrients and the 3 polymorphisms. Results: Except for folate intake, which was significantly lower in patients (P 0.02), no differences were observed in the dietary intake of other methyl-donor nutrients between groups. High intake of folate ( 406.7 g/d) was associated with a significantly lower risk of CRC (odds ratio: 0.67; 95% CI: 0.45, 0.99). The A2756G MTR polymorphism was not associated with the risk of developing CRC. In contrast, homozygosity for the C677TMTHFRvariant (TT) presented a 3.0-fold increased risk of CRC (95% CI: 1.3, 6.7). Similarly, homozygosity for the C1420T SHMT polymorphism also had a 2.6-fold increased risk (95% CI: 1.1, 5.9) of developing CRC. When interactions between variables were studied, low intake of all methyl-donor nutrients was associated with an increased risk ofCRC in homozygous participants for the C677T MTHFR polymorphism, but a statistically significant interaction was only observed for folate (odds ratio: 14.0; 95% CI: 1.8, 108.5). No significant associations were seen for MTR or SHMT polymorphisms. Conclusion: These results show an association between the C677T MTHFR variant and different folate intakes on risk of CRC.
Resumo:
Prostate cancer (PCa) is one of the most incident cancers worldwide but clinical and pathological parameters have limited ability to discriminate between clinically significant and indolent PCa. Altered expression of histone methyltransferases and histone methylation patterns are involved in prostate carcinogenesis. SMYD3 transcript levels have prognostic value and discriminate among PCa with different clinical aggressiveness, so we decided to investigate its putative oncogenic role on PCa.We silenced SMYD3 and assess its impact through in vitro (cell viability, cell cycle, apoptosis, migration, invasion assays) and in vivo (tumor formation, angiogenesis). We evaluated SET domain's impact in PCa cells' phenotype. Histone marks deposition on SMYD3 putative target genes was assessed by ChIP analysis.Knockdown of SMYD3 attenuated malignant phenotype of LNCaP and PC3 cell lines. Deletions affecting the SET domain showed phenotypic impact similar to SMYD3 silencing, suggesting that tumorigenic effect is mediated through its histone methyltransferase activity. Moreover, CCND2 was identified as a putative target gene for SMYD3 transcriptional regulation, through trimethylation of H4K20.Our results support a proto-oncogenic role for SMYD3 in prostate carcinogenesis, mainly due to its methyltransferase enzymatic activity. Thus, SMYD3 overexpression is a potential biomarker for clinically aggressive disease and an attractive therapeutic target in PCa.
Epigenetics and behavioural plasticity: drosophila euchromatin histone metiltransferase and foraging
Resumo:
A thesis submitted in fulfillment of the requirements for the degree of Masters in Molecular Genetics and Biomedicine
Resumo:
Prostate cancer (PCa) is one of the most incident cancers worldwide but clinical and pathological parameters have limited ability to discriminate between clinically significant and indolent PCa. Altered expression of histone methyltransferases and histone methylation patterns are involved in prostate carcinogenesis. SMYD3 transcript levels have prognostic value and discriminate among PCa with different clinical aggressiveness, so we decided to investigate its putative oncogenic role on PCa.We silenced SMYD3 and assess its impact through in vitro (cell viability, cell cycle, apoptosis, migration, invasion assays) and in vivo (tumor formation, angiogenesis). We evaluated SET domain's impact in PCa cells' phenotype. Histone marks deposition on SMYD3 putative target genes was assessed by ChIP analysis.Knockdown of SMYD3 attenuated malignant phenotype of LNCaP and PC3 cell lines. Deletions affecting the SET domain showed phenotypic impact similar to SMYD3 silencing, suggesting that tumorigenic effect is mediated through its histone methyltransferase activity. Moreover, CCND2 was identified as a putative target gene for SMYD3 transcriptional regulation, through trimethylation of H4K20.Our results support a proto-oncogenic role for SMYD3 in prostate carcinogenesis, mainly due to its methyltransferase enzymatic activity. Thus, SMYD3 overexpression is a potential biomarker for clinically aggressive disease and an attractive therapeutic target in PCa.
Resumo:
Secondary metabolites from plants are important sources of high-value chemicals, many of them being pharmacologically active. These metabolites are commonly isolated through inefficient extractions from natural biological sources and are often difficult to synthesize chemically. Therefore, their production using engineered organisms has lately attracted an increased attention. Curcuminoids, an example of such metabolites, are produced in Curcuma longa and exhibit anti-cancer and anti-inflammatory activities. Herein we report the construction of an artificial biosynthetic pathway for the curcuminoids production in Escherichia coli. Different 4-coumaroyl-CoA ligases (4CL) and polyketide synthases (diketide-CoA synthase (DCS), curcumin synthase (CURS) and curcuminoid synthase) were tested. The highest curcumin production (70 mg/L) was obtained by feeding ferulic acid and with the Arabidopsis thaliana 4CL1 and C. longa DCS and CURS enzymes. Other curcuminoids (bisdemethoxy- and demethoxycurcumin) were also produced by feeding coumaric acid or a mixture of coumaric and ferulic acids, respectively. Curcuminoids, including curcumin, were also produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase and 4-coumarate 3-hydroxylase were used. Caffeoyl-CoA O-methyltransferase was used to convert caffeoyl-CoA to feruloyl-CoA. This pathway represents an improvement of the curcuminoids heterologous production. The construction of this pathway in another model organism is being considered, as well as the introduction of alternative enzymes.
Resumo:
Dopamin, Substantia nigra, Gedächtnis, Hippocampus, funktionelle Magnetresonanztomographie, Genetik, Polymorphismus, Dopamin-Transporter, Catechol-O-Methyltransferase, Altern, Morbus Parkinson
Resumo:
Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.