969 resultados para Phenol hydroxylation
Resumo:
In this paper, the molecular connectivity indices and the electronic charge parameters of forty-eight phenol compounds nave been calculated. and applied for studying the relationship between partition coefficients and structure of phenol compounds. The results demonstrate that the properties of compounds can be described better with selective parameters, and the results obtained by neural network are superior to that by multiplle regression.
Resumo:
The electrochemical behavior of catechol, hydroquinone and resorcinol on GC and PPy/GC electrode surface were studied by CV and RDE method. The results indicated that these three substance could be oxidized electrocatalytically on PPy film electrode. The possibility of fabrication of amperometric electrochemical sensor for catechol was also studied.
Resumo:
Simultaneous nitrobenzene and phenol wet air oxidation was investigated in a stainless autoclave at temperature range of 180-220 ° C and 1.0 MPa oxygen partial pressure. Compared with the single oxidation of nitrobenzene under the same conditions, the presence of phenol in the reaction media greatly improved the removal efficiency of nitrobenzene. The effect of temperature on the reaction was studied. Phenol was considered as a type of initiator in the nitrobenzene oxidation. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
In the present investigation, the electrochemically-assisted oxidation of benzene in a H-2-O-2 proton exchange membrane fuel cell (PEMFC) for electricity and phenol cogeneration is studied. Experiments were carried out in a PEMFC electrochemical reactor using Pd black as cathode electrocatalyst at 60 and 80 degrees C, respectively and 1 atm back pressure. Indeed, it was found that the only product detected under the examined experimental conditions was phenol. The online GC product analysis revealed that it is impossible to produce phenol when the fuel cell circuit is open (I = 0) under all the examined experimental conditions. When the fuel cell circuit was closed, however, the phenol yield was found to follow a volcano-type dependence on the cur-rent of the external circuit. It was found that the maximum phenol yield was 0.35% at 100 mA/cm(2) at 80 degrees C. At the same time, the PEMFC performance was also investigated during the phenol generation process. Furthermore, experiments with the rotating ring disc electrode (RRDE) technique showed that the intermediate oxidation product, i.e. H2O2 existed during the oxygen electro-reduction process. The cyclic voltammograms showed that benzene was strongly adsorbed on the Pd surface, leading to a degradation of the PEMFC performance. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A previously unreported alcohol dehydrogenase enzyme in the mutant soil bacterium Pseudomonas putida UV4 catalyses the reduction of 2-, 3- and 4-acylpyridines to afford the corresponding (S)-1-pyridyl alkanols, with moderate to high e.e., whilst under the same conditions 2,6-diacetylpyridine is readily converted to the corresponding enantiopure C2-symmetric (S,S)-diol in one step. In contrast, the toluene dioxygenase enzyme in the same organism catalyses the hydroxylation of 2- and 3-alkylpyridines to (R)-1-(2-pyridyl) and (R)-1-(3-pyridyl)alkanols. This combination of oxidative and reductive biotransformations thus provides a method for preparing both enantiomers of chiral 1-pyridyl alkanols using one biocatalyst.
Resumo:
The hypoxia-inducible factor (HIF) transcription complex, which is activated by low oxygen tension, controls a diverse range of cellular processes including angiogenesis and erythropoiesis. Under normoxic conditions, the alpha subunit of HIF is rapidly degraded in a manner dependent on hydroxylation of two conserved proline residues at positions 402 and 564 in HIF-1alpha in the oxygen-dependent degradation (ODD) domain. This allows subsequent recognition by the von Hippel-Lindau (VHL) tumor suppressor protein, which targets HIF for degradation by the ubiquitin-proteasome pathway. Under hypoxic conditions, prolyl hydroxylation of HIF is inhibited, allowing it to escape VHL-mediated degradation. The transcriptional regulation of the erythropoietin gene by HIF raises the possibility that HIF may play a role in disorders of erythropoiesis, such as idiopathic erythrocytosis (IE).
Resumo:
Factors that control the competition between toluene dioxgenase-catalysed arene cis-dihydroxylation and dehydrogenase-catalysed ketone reduction have been studied, using whole cells of Pseudomonas putida UV and three alkylaryl ketones. The triol metabolite, obtained from 2,2,2-trifluoroacetophenone, has been used in the synthesis of single enantiomer chiral phenols and benzylic alcohols. Potential applications of the methylether derivatives of the chiral phenols and benzylic alcohols, as resolving agents, have been found. (c) 2007 Society of Chemical Industry.
Resumo:
The electrochemistry of phenol and 4-tert-butyl-phenol is described in [C(2)mim][NTf2] and [C(4)mpyrr][NTf2] ionic liquids. Oxidation of phenol and phenolate is observed at E-p(a) = +1.64 and +0.24 V vs. Ag in both ionic liquids. On the cathodic sweep at a potential of -2.05 P 02 V vs. Ag under an oxygen atmosphere, the production of O-2(2-) dianions triggers the formation of phenolate anions which undergo chemical oxidation to the phenoxyl radical. The phenoxyl radical then reacts with the [NTf2](-) anion of the ionic liquid to form the corresponding phenyl triflate molecule. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Toluene dioxygenase (TDO)-catalysed benzylic hydroxylation of indene substrates (8, 16 and 17), using whole cell cultures of Pseudomonas putida UV4, was found to yield inden-1-ol (14 and 22) and indan-1-one bioproducts (15 and 23). The formation of these bioproducts is consistent with the involvement of carbon-centred radical intermediates. TDO-catalysed oxidation of indenes 8 and 16 also gave cis-diols 13 and 18 respectively. TDO and naphthalene dioxygenase (NDO), used as both whole-cell preparations and as purified enzymes, were found to catalyse the benzylic hydroxylation of chromane 30, deuteriated (+/-)-chromane 30(D) and enantiomers (4S)-30(D) and (4R)-30(D) to yield (4R)- and (4S)-chroman-4-ols 31/31(D) respectively. The mechanism of benzylic hydroxylation of chromane 30/30(D) involves the stereoselective abstraction of a pro-R (with TDO) or a pro-S (with NDO) hydrogen atom at C-4 and a marked preference for retention of configuration.