969 resultados para Phase shift. Coral reefs. Alternative Stable States. Competition
Resumo:
Coral reefs, excellent climatic and environmental archives in tropical oceans, are widely distributed in the South China Sea (SCS), which is the largest enclosed marginal sea of western Pacific, covering over 20° in latitude and different climate conditions. Our recent research in the SCS focuses on coral-based high-resolution climate reconstruction and coral reef ecological responses using geochemical and U-series geochronological tools, which provide an ideal opportunity for understanding of Holocene climate processes and events. Some major research highlights are summarized below:
Resumo:
Return-to-Zero (RZ) and Non-Return-to-Zero (NRZ) Differential Phase Shift Keyed (DPSK) systems require cheap and optimal transmitters for widespread implementation. The authors report on a gain switched Discrete Mode (DM) laser that can be employed as a cost efficient transmitter in a 10.7 Gb/s RZ DPSK system and compare its performance to that of a gain switched Distributed Feed-Back (DFB) laser. Experimental results show that the gain switched DM laser readily provides error free performance and a receiver sensitivity of -33.1 dBm in the 10.7 Gbit/s RZ DPSK system. The standard DFB laser on the other hand displays an error floor at 10(-1) in the same RZ DPSK system. The difference in performance, between the two types of gain switched transmitters, is analysed by investigating their linewidths. We also demonstrate, for the first time, the generation of a highly coherent gain switched pulse train which displays a spectral comb of approximately 13 sidebands spaced by the 10.7 GHz modulation frequency. The filtered side-bands are then employed as narrow linewidth Continuous Wave (CW) sources in a 10.7 Gb/s NRZ DPSK system.
Resumo:
We demonstrate a novel Rayleigh interferometric noise mitigation scheme for applications in carrier-distributed dense wavelength division multiplexed (DWDM) passive optical networks at 10 Gbit/s using carrier suppressed subcarrier-amplitude modulated phase shift keying modulation. The required optical signal to Rayleigh noise ratio is reduced by 12 dB, while achieving excellent tolerance to dispersion, subcarrier frequency and drive amplitude variations.
Resumo:
We present a concept for all-optical regeneration of signals modulated in phase-sensitive modulation formats, which is based on a new design of Raman amplified nonlinear optical loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase-noise reduction in high-speed differential phase-shift-keying transmission systems by use of the RA-NOLM combined with spectral filtering.
Resumo:
We present a concept for all-optical regeneration of signals modulated in phase-sensitive modulation formats, which is based on a new design of Raman amplified nonlinear optical loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase-noise reduction in high-speed differential phase-shift-keying transmission systems by use of the RA-NOLM combined with spectral filtering. © 2006 IEEE.
Resumo:
We report for the first time the experimental demonstration of doubly differential quadrature phase shift keying (DDQPSK) using optical coherent detection. This method is more robust against high frequency offsets (FO) than conventional single differential quadrature phase shift keying (SDQPSK) with offset compensation. DDQPSK is shown to be able to compensate large FOs (up to the baud rate) and has lower computational requirements than other FO compensation methods. DDQPSK is a simple algorithm to implement in a real-time decoder for optical burst switched network scenarios. Simulation results are also provided, which show good agreement with the experimental results for both SDQPSK and DDQPSK transmissions. © 1989-2012 IEEE.
Resumo:
We examine reduction of phase jitter by use of in-line Butterworth filters in soliton systems in the context of differential phase-shift-keying coding. We also demonstrate numerically that the use of a Butterworth filter in a return-to-zero differential phase-shift-keying system can reduce continuum background radiation.