979 resultados para Perfused-rat-liver


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promoting activity of the herbicide Diuron was evaluated in a medium-term rat liver carcinogenesis bioassay that uses as endpoint immunohistochemically identified glutathione S-transferase positive (GST-P+) foci. Male Wistar rats were allocated to the following groups: G1 to G6 were initiated for liver carcinogenesis by a single dose of diethylnitrosamine (DEN, 200 mg/kg) while groups G7 and G8 received only 0.9% NaCl (DEN vehicle). From the 2nd week animals were fed a basal diet (G1 and G7) or a diet added with Diuron at 125, 500, 1250, 2500 and 2500 ppm (G2 to G5 and G8, respectively) or 200 ppm Hexaclorobenzene (HCB; G6). The animals were submitted to 70% partial hepatectomy at the 3rd week and sacrificed at the 8th week. The herbicide did not alter ALT or creatinine serum levels. No conspicuous GST-P+ foci development was registered in non-initiated rats fed Diuron at 2500 ppm. While DEN-initiated animals fed Diuron at 1250 or 2500 ppm developed mild centrilobular hypertrophy, DEN-initiated HCB-fed animals showed severe liver centrilobular hypertrophy and significant GST-P+ foci development. These findings indicate that the medium-term assay adopted in this study does not reveal any liver carcinogenesis initiating or promoting potential of Diuron in the rat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Risk assessments suggest that intermediate and long-term exposure to triazine herbicides and its metabolites through water can cause severe damage to human health. The objective of this study was to investigate the possible effects of atrazine on Wistar rats submitted to subacute treatment. For this purpose, the activity of catalase and alanine aminotransferase was quantified, and the effect of the herbicide on cell membranes was examined based on the measurement of lipid peroxidation and consequent formation of malondialdehyde and on the mRNA expression of antioxidant enzymes (Mn-superoxide dismutase [SOD] and GSTM1) and connexins. In addition, we evaluated histopathological alterations in the liver, cellular expression of SOD and glutathione (GST), activation of heat shock proteins (HSPs) by immunohistochemistry, and the induction of apoptosis. The genotoxic potential of the herbicide was investigated by the micronucleus test in bone marrow smears. Adult male Wistar rats were treated with an aqueous solution of atrazine at a concentration of 400 mg/kg/day, by gavage, for 14 consecutive days. Control groups were also included. The results showed an increase of catalase levels and maintenance of the expression of antioxidant enzymes (SOD and GST). In addition, lipid peroxidation, hepatic tissue degeneration, activation of HSP90, increased levels of connexin mRNA, and genotoxicity were observed. In conclusion, atrazine induced early hepatic oxidative stress that triggered defense mechanisms to maintain the morphophysiological integrity of the liver. Further studies are needed to better understand the effects of this herbicide on human health. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Idiosyncratic hepatotoxicity is a well-known complication associated with aromatic antiepileptic drugs (AAED), and it has been suggested to occur due to the accumulation of toxic arene oxide metabolites. Although there is clear evidence of the participation of an immune process, a direct toxic effect involving mitochondria dysfunction is also possible. The effects of AAED on mitochondrial function have not been studied yet. Therefore, we investigated, in vitro, the cytotoxic mechanism of carbamazepine (CB), phenytoin (PT) and phenobarbital (PB), unaltered and bioactivated, in the hepatic mitochondrial function. The murine hepatic microsomal system was used to produce the anticonvulsant metabolites. All the bioactivated drugs (CB-B, PB-B, PT-B) affected mitochondrial function causing decrease in state three respiration, RCR, ATP synthesis and membrane potential, increase in state four respiration as well as impairment of Ca(2+) uptake/release and inhibition of calcium-induced swelling. As an unaltered drug, only PB, was able to affect mitochondrial respiration (except state four respiration) ATP synthesis and membrane potential; however, Ca(2+) uptake/release as well as swelling induction were not affected. The potential to induce mitochondrial dysfunction was PT-B > PB-B > CB-B > PB. Results suggest the involvement of mitochondrial toxicity in the pathogenesis of AAED-induced hepatotoxicity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of crude extracts of the mushroom Agaricus blazei Murrill (Agaricaceae) on both DNA damage and placental form glutathione S-transferase (GST-P)-positive liver foci induced by diethylnitrosamine (DEN) were investigated. Six groups of adult male Wistar rats were used. For two weeks, animals of groups 3 to 6 were treated with three aqueous solutions of A. blazei (mean dry weight of solids being 1.2, 5.6, 11.5 and 11.5 mg/ml, respectively). After this period, groups 2 to 5 were given a single ip injection 200 mg/kg DEN and groups 1 and 6 were treated with 0.9% NaCl. All animals were subjected to 70% partial hepatectomy at week five and sacrificed 4, 24 and 48 h or 8 weeks after DEN or 0.9% NaCl treatments (10th week after the beginning of the experiment). The alkaline comet assay and GST-P-positive liver foci development were used to evaluate the influence of the mushroom extracts on liver cell DNA damage and on the initiation of liver carcinogenesis, respectively. Previous treatment with the highest concentration of A. blazei (11.5 mg/ml) significantly reduced DNA damage, indicating a protective effect against DEN-induced liver cytotoxicity/genotoxicity. However, the same dose of mushroom extract significantly increased the number of GST-P-positive liver foci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fipronil is an insecticide extensively used to control pests in crops and animals. There are relates of poisoning due to exposure of fipronil in mammals and the liver has been suggested as potential target. In this study, we evaluated the effects of fipronil and its metabolites sulfone and desulfinyl on the bioenergetics, reactive oxygen species (ROS) production and calcium efflux from mitochondria isolated from rat liver. Fipronil (5-25 μM) inhibited state-3 respiration in mitochondria energized with glutamate plus malate, substrates of complex I of the respiratory chain and decreased the mitochondrial membrane potential resulting in inhibition of ATP synthesis. Fipronil also caused uncoupling in succinate-energized mitochondria and calcium efflux. The metabolites sulfone and desulfinyl also acted as mitochondrial inhibitors and uncouplers and caused calcium efflux, but with different potencies, being the sulfone the more potent one. These effects of fipronil and its metabolites on mitochondrial bioenergetics and calcium homeostasis may be related to toxic effects of the insecticide in the liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the effects of chronic hyperprolinemia on oxidative and metabolic status in liver and serum of rats. Wistar rats received daily subcutaneous injections of proline from their 6th to 28th day of life. Twelve hours after the last injection the rats were sacrificed and liver and serum were collected. Results showed that hyperprolinemia induced a significant reduction in total antioxidant potential and thiobarbituric acid-reactive substances. The activities of the antioxidant enzymes catalase and superoxide dismutase were significantly increased after chronic proline administration, while glutathione (GSH) peroxidase activity, dichlorofluorescin oxidation, GSH, sulfhydryl, and carbonyl content remained unaltered. Histological analyses of the liver revealed that proline treatment induced changes of the hepatic microarchitecture and increased the number of inflammatory cells and the glycogen content. Biochemical determination also demonstrated an increase in glycogen concentration, as well as a higher synthesis of glycogen in liver of hyperprolinemic rats. Regarding to hepatic metabolism, it was observed an increase on glucose oxidation and a decrease on lipid synthesis from glucose. However, hepatic lipid content and serum glucose levels were not changed. Proline administration did not alter the aminotransferases activities and serum markers of hepatic injury. Our findings suggest that hyperprolinemia alters the liver homeostasis possibly by induction of a mild degree of oxidative stress and metabolic changes. The hepatic alterations caused by proline probably do not implicate in substantial hepatic tissue damage, but rather demonstrate a process of adaptation of this tissue to oxidative stress. However, the biological significance of these findings requires additional investigation. J. Cell. Biochem. 113: 174183, 2012. (C) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The aim of this work was to study the effects of P. major against the oxidative damage of isolated rat liver mitochondria. Methods The extracts were obtained using methanol (MeOH), ethyl acetate (EAc), dichloromethane (DCM), and hexane (Hex) as solvents. Key findings Hex, DCM, and EAc totally, and MeOH partially, inhibited ROS generation and lipid peroxidation of membranes induced by Fe2+ or t-BOOH. However, only MeOH was able to prevent the t-BOOH-induced glutathione and NAD(P)H oxidation. All extracts chelated Fe2+ and reduced DPP Hradicals. EPR analysis revealed that P. major exhibited potent scavenger activity for hydroxyl radicals. Conclusions The potent antioxidant activity exhibited by P. major was able to prevent oxidative mitochondrial damage, contributing to the understanding of its hepatoprotective action against ROS-mediated toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up-regulation of stress-activated proteins in cancer cells plays a protective role against photodynamic induced apoptosis. Post photodynamic therapy extracted normal rat liver tissue usually shows a fraction of surviving cells, the photodynamic resistant cells, residing in the necrotic region. To treat these photo-dynamic resistant cells a technique has been proposed based on fractionated drug administration of diluted photosensitizer, keeping the net concentration (5 mg/kg) constant, and subsequently varying drug light interval (DLI). Flourescence measurements were made for the presence of photosensitizer in a tissue. For qualitative analysis both histological and morphological studies were made. Although preliminary aim of this approach was not achieved but there were some interesting observation made i.e. for higher dilution of photosensitizer there was a sharp boundary between necrotic and normal portion of tissue. An increase in the absorption coefficient (alpha) from 2.7 -> 2.9 was observed as photosensitizer was diluted while the corresponding threshold dose (D (th)) persistently decreases from (0.10 -> 0.02) J/cm(2) when irradiated with a 635 nm laser fluence of 150 J/cm(2).