911 resultados para Partitioning of variation
Resumo:
A method is outlined for optimising graph partitions which arise in mapping un- structured mesh calculations to parallel computers. The method employs a combination of iterative techniques to both evenly balance the workload and minimise the number and volume of interprocessor communications. They are designed to work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. The algorithms can also be used for dynamic load-balancing and a clustering technique can additionally be employed to speed up the whole process. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds.
Resumo:
Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intraindividual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076–4.5) mg kg-1 in body feathers, 0.44 (0.040–4.9) mg kg-1 in primary and 0.60 (0.042–4.7) mg kg-1 in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both betweenfeather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.
Resumo:
Recently, the introduction of second generation sequencing and further advance-ments in confocal microscopy have enabled system-level studies for the functional characterization of genes. The degree of complexity intrinsic to these approaches needs the development of bioinformatics methodologies and computational models for extracting meaningful biological knowledge from the enormous amount of experi¬mental data which is continuously generated. This PhD thesis presents several novel bioinformatics methods and computational models to address specific biological questions in Plant Biology by using the plant Arabidopsis thaliana as a model system. First, a spatio-temporal qualitative analysis of quantitative transcript and protein profiles is applied to show the role of the BREVIS RADIX (BRX) protein in the auxin- cytokinin crosstalk for root meristem growth. Core of this PhD work is the functional characterization of the interplay between the BRX protein and the plant hormone auxin in the root meristem by using a computational model based on experimental evidence. Hyphotesis generated by the modelled to the discovery of a differential endocytosis pattern in the root meristem that splits the auxin transcriptional response via the plasma membrane to nucleus partitioning of BRX. This positional information system creates an auxin transcriptional pattern that deviates from the canonical auxin response and is necessary to sustain the expression of a subset of BRX-dependent auxin-responsive genes to drive root meristem growth. In the second part of this PhD thesis, we characterized the genome-wide impact of large scale deletions on four divergent Arabidopsis natural strains, through the integration of Ultra-High Throughput Sequencing data with data from genomic hybridizations on tiling arrays. Analysis of the identified deletions revealed a considerable portion of protein coding genes affected and supported a history of genomic rearrangements shaped by evolution. In the last part of the thesis, we showed that VIP3 gene in Arabidopsis has an evo-lutionary conserved role in the 3' to 5' mRNA degradation machinery, by applying a novel approach for the analysis of mRNA-Seq data from random-primed mRNA. Altogether, this PhD research contains major advancements in the study of natural genomic variation in plants and in the application of computational morphodynamics models for the functional characterization of biological pathways essential for the plant. - Récemment, l'introduction du séquençage de seconde génération et les avancées dans la microscopie confocale ont permis des études à l'échelle des différents systèmes cellulaires pour la caractérisation fonctionnelle de gènes. Le degrés de complexité intrinsèque à ces approches ont requis le développement de méthodologies bioinformatiques et de modèles mathématiques afin d'extraire de la masse de données expérimentale générée, des information biologiques significatives. Ce doctorat présente à la fois des méthodes bioinformatiques originales et des modèles mathématiques pour répondre à certaines questions spécifiques de Biologie Végétale en utilisant la plante Arabidopsis thaliana comme modèle. Premièrement, une analyse qualitative spatio-temporelle de profiles quantitatifs de transcripts et de protéines est utilisée pour montrer le rôle de la protéine BREVIS RADIX (BRX) dans le dialogue entre l'auxine et les cytokinines, des phytohormones, dans la croissance du méristème racinaire. Le noyau de ce travail de thèse est la caractérisation fonctionnelle de l'interaction entre la protéine BRX et la phytohormone auxine dans le méristème de la racine en utilisant des modèles informatiques basés sur des preuves expérimentales. Les hypothèses produites par le modèle ont mené à la découverte d'un schéma différentiel d'endocytose dans le méristème racinaire qui divise la réponse transcriptionnelle à l'auxine par le partitionnement de BRX de la membrane plasmique au noyau de la cellule. Cette information positionnelle crée une réponse transcriptionnelle à l'auxine qui dévie de la réponse canonique à l'auxine et est nécessaire pour soutenir l'expression d'un sous ensemble de gènes répondant à l'auxine et dépendant de BRX pour conduire la croissance du méristème. Dans la seconde partie de cette thèse de doctorat, nous avons caractérisé l'impact sur l'ensemble du génome des délétions à grande échelle sur quatre souches divergentes naturelles d'Arabidopsis, à travers l'intégration du séquençage à ultra-haut-débit avec l'hybridation génomique sur puces ADN. L'analyse des délétions identifiées a révélé qu'une proportion considérable de gènes codant était affectée, supportant l'idée d'un historique de réarrangement génomique modelé durant l'évolution. Dans la dernière partie de cette thèse, nous avons montré que le gène VÏP3 dans Arabidopsis a conservé un rôle évolutif dans la machinerie de dégradation des ARNm dans le sens 3' à 5', en appliquant une nouvelle approche pour l'analyse des données de séquençage d'ARNm issue de transcripts amplifiés aléatoirement. Dans son ensemble, cette recherche de doctorat contient des avancées majeures dans l'étude des variations génomiques naturelles des plantes et dans l'application de modèles morphodynamiques informatiques pour la caractérisation de réseaux biologiques essentiels à la plante. - Le développement des plantes est écrit dans leurs codes génétiques. Pour comprendre comment les plantes sont capables de s'adapter aux changements environnementaux, il est essentiel d'étudier comment leurs gènes gouvernent leur formation. Plus nous essayons de comprendre le fonctionnement d'une plante, plus nous réalisons la complexité des mécanismes biologiques, à tel point que l'utilisation d'outils et de modèles mathématiques devient indispensable. Dans ce travail, avec l'utilisation de la plante modèle Arabidopsis thalicinci nous avons résolu des problèmes biologiques spécifiques à travers le développement et l'application de méthodes informatiques concrètes. Dans un premier temps, nous avons investigué comment le gène BREVIS RADIX (BRX) régule le développement de la racine en contrôlant la réponse à deux hormones : l'auxine et la cytokinine. Nous avons employé une analyse statistique sur des mesures quantitatives de transcripts et de produits de gènes afin de démontrer que BRX joue un rôle antagonisant dans le dialogue entre ces deux hormones. Lorsque ce-dialogue moléculaire est perturbé, la racine primaire voit sa longueur dramatiquement réduite. Pour comprendre comment BRX répond à l'auxine, nous avons développé un modèle informatique basé sur des résultats expérimentaux. Les simulations successives ont mené à la découverte d'un signal positionnel qui contrôle la réponse de la racine à l'auxine par la régulation du mouvement intracellulaire de BRX. Dans la seconde partie de cette thèse, nous avons analysé le génome entier de quatre souches naturelles d'Arabidopsis et nous avons trouvé qu'une grande partie de leurs gènes étaient manquant par rapport à la souche de référence. Ce résultat indique que l'historique des modifications génomiques conduites par l'évolution détermine une disponibilité différentielle des gènes fonctionnels dans ces plantes. Dans la dernière partie de ce travail, nous avons analysé les données du transcriptome de la plante où le gène VIP3 était non fonctionnel. Ceci nous a permis de découvrir le rôle double de VIP3 dans la régulation de l'initiation de la transcription et dans la dégradation des transcripts. Ce rôle double n'avait jusqu'alors été démontrée que chez l'homme. Ce travail de doctorat supporte le développement et l'application de méthodologies informatiques comme outils inestimables pour résoudre la complexité des problèmes biologiques dans la recherche végétale. L'intégration de la biologie végétale et l'informatique est devenue de plus en plus importante pour l'avancée de nos connaissances sur le fonctionnement et le développement des plantes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Seed dispersal effectiveness (SDE) is a conceptual framework that aims at quantifying the contribution of seed dispersal vectors to plant fitness. While it is well recognized that diplochorous dispersal systems, characterized by two successive dispersal steps performed by two different vectors (Phase I=primary seed dispersal and Phase II=secondary seed dispersal) which are common in temperate and tropical regions, little attention has been given to distinguishing the relative contribution of one-phase and two-phase dispersal to overall SDE. This conceptual gap probably results from the lack of a clear methodology to include Phase II dispersal into the calculation of SDE and to quantify its relative contribution. We propose a method to evaluate the relative contribution of one-phase and two-phase dispersal to SDE and determine whether two seed dispersers are better than one. To do so, we used the SDE landscape and an extension of the SDE landscape, the Phase II effect landscape, which measures the direction and magnitude of the Phase II dispersal effect on overall SDE. We used simulated and empirical data from a diplochorous dispersal system in the Peruvian Amazon to illustrate this new approach. Our approach provides the relative contribution of one-phase SDE (SDE1) and two-phase SDE (SDE2) to overall SDE and quantifies how much SDE changes with the addition of Phase II dispersal. Considering that the seed dispersal process is context dependent so that Phase II depends on Phase I, we predict the possible range of variation of SDE according to the variation of the probability of Phase II dispersal. In our specific study system composed of two primate species as primary dispersal vectors and different species of dung beetles as secondary dispersal vectors, the relative contribution of SDE1 and SDE2 to overall SDE varied between plant species. We discuss the context dependency of the Phase II dispersal and the potential applications of our approach. This extension to the conceptual framework of SDE enables quantitative evaluation of the effect of Phase II dispersal on plant fitness and can be easily adapted to other biotic and/or abiotic diplochorous dispersal systems.
Resumo:
In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to determine how thallus symmetry could be maintained in foliose lichens when variation in the growth of individual lobes may be high. Hence, the radial growth of a sample of lobes was studied monthly, over 22 months, in 7 thalli of Parmelia conspersa (Ehrh. Ex Ach.) Ach. And 5 thalli of P. glabratula ssp fuliginosa (fr. ex Duby) Laund. The degree of variation in the total radial growth of different lobes within a thallus over 22 months varied between thalli. Individual lobes showed a fluctuating pattern of radial growth from month to month with alternating periods of fast and slow growth. Monthly variations in radial growth of different lobes were synchronized in some but not in all thalli. Few significant correlations were found between the radial growth of individual lobes and total monthly rainfall or shortwave radiation. The levels of ribitol, arabitol and mannitol were measured in individual lobes. All three polyols varied significantly between lobes within a thallus suggesting that variations in algal phostosynthesis and in the partitioning of fungal polyols may contribute to lobe growth variation. The effect on thallus symmetry of lobes which grew radially either consistently faster or slower than average was studied. Slow growing lobes were overgrown, and gaps in the perimeter were eliminated by the growth of neighbouring lobes, in approximately 7 to 9 months. However, a rapidly growing lobe, with its neighbours removed on either side, continued to grow radially at the same rate as rapidly growing control lobes. The results suggested that lobe growth variation results from a combination of factors which may include the origin of the lobes, lobe morphology and the patterns of algal cell division and hyphal elongation in different lobes. No convincing evidence was found to suggest that exchange of carbohydrate occurred between lobes which would tend to equalize their radial growth. Hence, the fluctuating pattern of lobe growth observed may be sufficient to maintain a degree of symmetry in most thalli. In addition, slow growing lobes would tend to be overgrown by faster growing neighbours thus preventing the formation of indentations in the thallus perimeter.
Resumo:
Melaleuca quinquenervia (Cav.) Blake (Myrtaceae) was imported into Florida from Australia over a century ago as a landscape plant. A favorable climate and periodic wildfires helped M. quinquenervia thrive; it now occupies about 200,000 hectares in southern Florida. A biological control (i.e., biocontrol) program against M. quinquenervia has been initiated, but not all biocontrol releases are successful. Some scientists have argued that poor biocontrol agent success may relate to genetic differences among populations of invasive weeds. I tested this premise by determining (1) the number and origins of M. quinquenervia introductions into Florida, (2) whether multiple introduction events resulted in the partitioning of Florida's M. quinquenervia populations into discrete biotypes, and (3) whether Oxyops vitiosa, an Australia snout beetle imported to control this weed, might discriminate among putative M. quinquenervia biotypes. Careful scrutiny of early horticultural catalogs and USDA plant introduction records suggested at least six distinct introduction events. Allozyme analyses indicated that the pattern of these introductions, and the subsequent redistribution of progeny, has resulted in geographic structuring of the populations in southern Florida. For example, trees on Florida's Gulf Coast had a greater effective number of alleles and exhibited greater heterozygosity than trees on the Atlantic Coast. Essential oil yields from M. quinquenervia leaves followed a similar trend; Gulf Coast trees yielded nearly twice as much oil as Atlantic Coast trees when both were grown in a common garden. These differences were partially explained by the predominance of a chemical phenotype (chemotype) very rich in the sesquiterpene (E)-nerolidol in M. quinquenervia trees from the Gulf Coast, but rich in a mixture of the monoterpene 1,8-cineole and the sesquiterpene viridiflorol in trees from the Atlantic Coast. Performance of O. vitiosa differed dramatically in laboratory studies depending on the chemotype of the foliage they were fed. Larval survivorship was four-fold greater on the (E)-nerolidol chemotype. Growth was also greater, with adult O. vitiosa gaining nearly 50% more biomass on the (E)-nerolidol plants than on the second chemotype. The results of this study thus confirmed the premise that plant genotype can affect the population dynamics of insects released as weed biocontrols. ^
Resumo:
Knowledge of movements and habitat use is necessary to assess a species’ ecological role and is especially important for mesopredators because they provide the link between upper and lower trophic levels. Using acoustic telemetry, we examined coarse-scale diel and seasonal movements of elasmobranch mesopredators on a shallow sandflat in Shark Bay, Western Australia. Giant shovelnose rays (Glaucostegus typus) and reticulate whiprays (Himantura uarnak) were most often detected in nearshore microhabitats and were regularly detected throughout the day and year, although reticulate whiprays tended to frequent the monitored array over longer periods. Pink whiprays (H. fai) and cowtail stingrays (Pastinachus atrus) were also detected throughout the day, but were far less frequently detected. Overall, there was no apparent spatial or temporal partitioning of the sandflats, but residency to the area varied between species. In addition, ray presence throughout the year suggests that previously observed differences in seasonal abundance are likely because of seasonal changes in habitat use rather than large-scale migrations. Continuous use of the sandflats and limited movements within this ray community suggests that rays have the potential to be a structuring force on this system and that focusing on nearshore habitats is important for managing subtropical ray populations.
Resumo:
Objective: To analyse the time variation of topics in bioethical publications as a proxy of the relative importance. Methods: We searched the Medline database for bioethics publications using the words ""ethics or bioethics'', and for 360 specific topics publications, associating Medical Subject Heading topic descriptors to those words. We calculated the ratio of bioethics publications to the total publications of Medline, and the ratio of each topic publications to the total bioethics publications, for five-year intervals, from 1970 to 2004. We calculated the time variation of ratios, dividing the difference between the highest and lowest ratio of each topic by its highest ratio. Four topics were described, selected to illustrate different patterns of variation: ""Induced Abortion'', ""Conflict of Interest'', ""Acquired Immunodeficiency Syndrome'', ""Medical Education.'' Results: The ratio of bioethics publications to total Medline publications increased from 0.003 to 0.012. The variation of the topic's ratios was higher than 0.7 for 68% of the topics. The Induced Abortion ratios decreased from 0.12 to 0.02. Conflict of Interest ratios increased from zero to 0.07. The Acquired Immunodeficiency Syndrome ratios were nearly zero in the first three intervals, had a peak of 0.06 during 1985-9, followed by a decrease to 0.01. Medical Education ratios varied few, from 0.04 to 0.03. Conclusions: There was an increase of bioethical publications in the Medline database. The topics in bioethics literature have an important time variation. Some factors were suggested to explain this variation: current legal cases, resolution of the issue, saturation of a discussion and epidemiologic importance.
Resumo:
For many species of marine invertebrates, variability in larval settlement behaviour appears to be the rule rather than the exception. This variability has the potential to affect larval dispersal, because settlement behaviour will influence the length of time larvae are in the plankton. Despite the ubiquity and importance of this variability, relatively few sources of variation in larval settlement behaviour have been identified. One important factor that can affect larval settlement behaviour is the nutritional state of larvae. Non-feeding larvae often become less discriminating in their 'choice' of settlement substrate, i.e. more desperate to settle, when energetic reserves run low. We tested whether variation in larval size (and presumably in nutritional reserves) also affects the settlement behaviour of 3 species of colonial marine invertebrate larvae, the bryozoans Bugula neritina and Watersipora subtorquata and the ascidian Diplosoma listerianum. For all 3 species, larger larvae delayed settlement for longer in the absence of settlement cues, and settlement of Bugula neritina larvae was accelerated by the presence of settlement cues, independently of larval size. In the field, larger W subtorquata larvae also took longer to settle than smaller larvae and were more discriminating towards settlement surfaces. These differences in settlement time are likely to result in differences in the distance that larvae disperse in the field. We suggest that species that produce non-feeding larvae can affect the dispersal potential of their offspring by manipulating larval size and thus larval desperation.
Resumo:
Pearl millet landraces from Rajasthan, India, yield significantly less than improved cultivars under optimum growing conditions, but not under stressed conditions. To successfully develop a simulation model for pearl millet, capable of capturing such genotype x environment (G x E) interactions for grain yield, we need to understand the causes of the observed yield interaction. The aim of this paper is to quantify the key parameters that determine the accumulation and partitioning of biomass: the,light extinction coefficient, radiation use efficiency (RUE), pattern of dry matter allocation to the leaf blades, the determination of grain number, and the rate and duration of dry matter accumulation into individual grains. We used data on improved cultivars and landraces, obtained from both published and unpublished sources collected at ICRISAT, Patancheru, India. Where possible, the effects of cultivar and axis (main shoot vs. tillers) on these parameters were analysed, as previous research suggested that G x E interactions for grain yield are associated with differences in tillering habit. Our results indicated there were no cultivar differences in extinction coefficient, RUE, and biomass partitioning before anthesis, and differences between axes in biomass partitioning were negligible. This indicates there was no basis for cultivar differences in the potential grain yield. Landraces, however, produced consistently less grain yield for a given rate of dry matter accumulation at anthesis than did improved cultivars. This was caused by a combination of low grain number and small grain size. The latter was predominantly due to a lower grain growth rate, as genotypic differences in the duration of grain filling were relatively small. Main shoot and tillers also had a similar duration of grain filling. The low grain yield of the landraces was associated with profuse nodal tillering, supporting the hypothesis that grain yield was below the potential yield that could be supported by assimilate availability. We hypothesise this is a survival strategy, which enhances the prospects to escape the effects of stress around anthesis. (C) 2002 E.J. van Oosterom. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Predicting plant leaf area production is required for modelling carbon balance and tiller dynamics in plant canopies. Plant leaf area production can be studied using a framework based on radiation intercepted, radiation use efficiency (RUE) and leaf area ratio (LAR) (ratio of leaf area to net above-ground biomass). The objective of this study was to test this framework for predicting leaf area production of sorghum during vegetative development by examining the stability of the contributing components over a large range of plant density. Four densities, varying from 2 to 16 plants m(-2), were implemented in a field experiment. Plants were either allowed to tiller or were maintained as uniculm by systematic tiller removal. In all cases, intercepted radiation was recorded daily and leaf area and shoot dry matter partitioning were quantified weekly at individual culm level. Up to anthesis, a unique relationship applied between fraction of intercepted radiation and leaf area index, and between shoot dry weight accumulation and amount of intercepted radiation, regardless of plant density. Partitioning of shoot assimilate between leaf, stem and head was also common across treatments up to anthesis, at both plant and culm levels. The relationship with thermal time (TT) from emergence of specific leaf area (SLA) and LAR of tillering plants did not change with plant density. In contrast, SLA of uniculm plants was appreciably lower under low-density conditions at any given TT from emergence. This was interpreted as a consequence of assimilate surplus arising from the inability of the plant to compensate by increasing the leaf area a culm could produce. It is argued that the stability of the extinction coefficient, RUE and plant LAR of tillering plants observed in these conditions provides a reliable way to predict leaf area production regardless of plant density. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Increasingly, electropalatography (EPG) is being used in speech pathology research to identify and describe speech disorders of neurological origin. However, limited data currently exists that describes normal articulatory segment timing and the degree of variability exhibited by normal speakers when assessed with EPG. Therefore, the purpose of the current investigation was to use the Reading EPG3 system to quantify segmental timing values and examine articulatory timing variability for three English consonants. Ten normal subjects repeated ten repetitions of CV words containing the target consonants /t/, /l/, and /s/ while wearing an artificial palate. The target consonants were followed by the /i/ vowel and were contained in the carrier phrase 'I saw a __'. Mean duration of the approach, closure/constriction, and release phases of consonant articulation were calculated. In addition, inter-subject articulatory timing variability was investigated using descriptive graphs and intra-subject articulatory timing variability was investigated using a coefficient of variation. Results revealed the existence of intersubject variability for mean segment timing values. This could be attributed to individual differences in the suprasegmental features of speech and individual differences in oral cavity size and structure. No significant differences were reported for degree of intra-subject variability between the three sounds for these same phases of articulation. However, when this data set was collapsed, results revealed that the closure/constriction phase of consonant articulation exhibited significantly less intra-subject variability than both the approach and release phases. The stabilization of the tongue against the fixed structure of the hard palate during the closure phase of articulation may have reduced the levels of intra-subject variability.
Resumo:
Women have lower iron stores than men because of iron loss during their reproductive years. However, variation between women could result from differences in iron loss, aspects of iron homeostasis common to men and women, or a combination of both. We compared the effects of age, menopause, menstrual blood loss and the number of pregnancies (sex-specific factors), and the effects of genetic variation, on markers of iron stores. We assessed how much the same genes or other familial factors influence iron status in both men and women. Data from 2039 female twins who participated in studies of reproductive health and iron status were used to estimate the proportions of variation that could be ascribed to genes, environment and measured factors. Significant effects of age, menopausal status and magnitude of menstrual blood loss were demonstrated, accounting for up to 18% of variance in serum ferritin in this sample, but number of children had no significant effect. Genetic effects were more than twice as great as sex-specific effects. The within-pair similarity of ferritin values in dizygotic female twin pairs was greater than for dizygotic opposite-sex pairs, but this difference was not quite significant, consistent with a minor role for sex-specific factors; and the opposite-sex within-pair differences did not diminish significantly with age. We conclude that the contribution of genetic differences between women to variation in iron stores outweighs the comparatively small effects of interindividual variation in iron loss through variation in menstruation and number of pregnancies.