974 resultados para Particle Distribution


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Patterns of evanescent photovoltaic field induced by illumination on a surface of lithium niobate (LN) have been calculated and compared with the experimental patterns of nano- and microparticles trapped by dielectrophoretic forces. A tool for this calculation has been developed. Calculo de distribución espacial de campo por efecto fotovoltaico con patrones arbitrarios de iluminación, en LiNbO3

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of particulate systems is of great interest in many fields of science and technology. Soil, sediments, powders, granular materials, colloidal and particulate suspensions are examples of systems involving many size particles. For those systems, the statistical description of the particle size distribution (PSD), that is, the mathematical distribution that defines the relative amounts of particles present, sorted according to size, is a crutial issue. The PSD can be important in understanding soil hydraulic properties, the geological origin or sediments or the physical and chemical properties of granular materials and ceramics, among others.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 2D computer simulation method of random packings is applied to sets of particles generated by a self-similar uniparametric model for particle size distributions (PSDs) in granular media. The parameter p which controls the model is the proportion of mass of particles corresponding to the left half of the normalized size interval [0,1]. First the influence on the total porosity of the parameter p is analyzed and interpreted. It is shown that such parameter, and the fractal exponent of the associated power scaling, are efficient packing parameters, but this last one is not in the way predicted in a former published work addressing an analogous research in artificial granular materials. The total porosity reaches the minimum value for p = 0.6. Limited information on the pore size distribution is obtained from the packing simulations and by means of morphological analysis methods. Results show that the range of pore sizes increases for decreasing values of p showing also different shape in the volume pore size distribution. Further research including simulations with a greater number of particles and image resolution are required to obtain finer results on the hierarchical structure of pore space.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of granular systems is of great interest to many fields of science and technology. The packing of particles affects to the physical properties of the granular system. In particular, the crucial influence of particle size distribution (PSD) on the random packing structure increase the interest in relating both, either theoretically or by computational methods. A packing computational method is developed in order to estimate the void fraction corresponding to a fractal-like particle size distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, translating information about hydrologic and soil properties and processes across scales has emerged as a major theme in soil science and hydrology, and suitable theories for upscaling or downscaling hydrologic and soil information are being looked forward. The recognition of low-order catchments as self-organized systems suggests the existence of a great amount of links at different scales between their elements. The objective of this work was to research in areas of homogeneous bedrock material, the relationship between the hierarchical structure of the drainage networks at hillslope scale and the heterogeneity of the particle-size distribution at pedon scale. One of the most innovative elements in this work is the choice of the parameters to quantify the organization level of the studied features. The fractal dimension has been selected to measure the hierarchical structure of the drainage networks, while the Balanced Entropy Index (BEI) has been the chosen parameter to quantify the heterogeneity of the particle-size distribution from textural data. These parameters have made it possible to establish quantifiable relationships between two features attached to different steps in the scale range. Results suggest that the bedrock lithology of the landscape constrains the architecture of the drainage networks developed on it and the particle soil distribution resulting in the fragmentation processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, translating information about hydrologic and soil properties and processes across scales has emerged as a major theme in soil science and hydrology, and suitable theories for upscaling or downscaling hydrologic and soil information are being looked forward. The recognition of low-order catchments as self-organized systems suggests the existence of a great amount of links at different scales between their elements. The objective of this work was to research in areas of homogeneous bedrock material, the relationship between the hierarchical structure of the drainage networks at hillslope scale and the heterogeneity of the particle-size distribution at pedon scale. One of the most innovative elements in this work is the choice of the parameters to quantify the organization level of the studied features. The fractal dimension has been selected to measure the hierarchical structure of the drainage networks, while the Balanced Entropy Index (BEI) has been the chosen parameter to quantify the heterogeneity of the particle-size distribution from textural data. These parameters have made it possible to establish quantifiable relationships between two features attached to different steps in the scale range. Results suggest that the bedrock lithology of the landscape constrains the architecture of the drainage networks developed on it and the particle soil distribution resulting in the fragmentation processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Supported in part by the Atomic Energy Commission."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project was supported by the National Natural Science Foundation of China (No. 41572116), the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan) (No. CUG160602).