108 resultados para Parnell


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Date of acceptance: 09/07/2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Timothy Bata is thankful to the Petroleum Technology Development Fund of Nigeria (PTDF) (PTDF/E/OSS/PHD/BTP/359/11) for sponsoring his PhD research at the University of Aberdeen, and the management of Abubakar Tafawa Balewa University, Bauchi, Nigeria, for permitting him to proceed on study leave. We are grateful to Colin Taylor for his help during laboratory work and S. Bowden for advice on the interpretation of the gas chromatographic data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Date of acceptance: 09/07/2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Timothy Bata is thankful to the Petroleum Technology Development Fund of Nigeria (PTDF) (PTDF/E/OSS/PHD/BTP/359/11) for sponsoring his PhD research at the University of Aberdeen, and the management of Abubakar Tafawa Balewa University, Bauchi, Nigeria, for permitting him to proceed on study leave. We are grateful to Colin Taylor for his help during laboratory work and S. Bowden for advice on the interpretation of the gas chromatographic data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Date of Acceptance: 29/12/2015 We are grateful to A. Sandison and W. Thayalon for skilled technical support, and Mike Porter and an anonymous reviewer, who helped to clarify the manuscript.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2016 Institute of Materials, Minerals and Mining and The AusIMM Published by Taylor & Francis on behalf of the Institute and The AusIMM

Relevância:

10.00% 10.00%

Publicador:

Resumo:

M thanks the STFC for a PhD studentship and the NASA Astrobiology Institute for additional funding (NNAI13AA90A; Foundations of Complex Life, Evolution, Preservation and Detection on Earth and Beyond). Alison Wright, Roger Gibson and Edward Lynch are thanked for contributing samples. We thank three anonymous reviewers for their insightful comments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Date of acceptance: 09/07/2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We acknowledge the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, a facility funded by the University, State and Commonwealth Governments. DW acknowledges funding from the European Commission and the Australian Research Council. This is publication number 838 from the Australian Research Council Centre of Excellence for Core to Crust Fluid Systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through this paper we will look at links between architecture education, research and practice, using a current project as a vehicle to cover aspects of building, pilot and live project. The first aspect, the building project consists of the refurbishment and extension of a Parnell Cottage for a private client and is located near Cloyne, in East Cork, Ireland. The pilot project falls within the NEES Project, investigating the use of materials and services based on natural or recycled materials to improve the energy performance of new and existing buildings. The live project aims to hold a series of on site workshops and seminars for students of Architecture, Architects and interested parties, demonstrating the integration of the NEES best practice materials and techniques within the built project. The workshops, seminars and key project documents will be digitally recorded for dissemination through a web based publication. The small scale of the building project allowed for flexibility in the early conceptual design stages and the integration of the research and educational aspects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 - 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.