972 resultados para Parallel design multicenter


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the monolithic decoupled XYZ compliant parallel mechanisms (CPMs) for multi-function applications, which can be fabricated monolithically without assembly and has the capability of kinetostatic decoupling. At first, the conceptual design of monolithic decoupled XYZ CPMs is presented using identical spatial compliant multi-beam modules based on a decoupled 3-PPPR parallel kinematic mechanism. Three types of applications: motion/positioning stages, force/acceleration sensors and energy harvesting devices are described in principle. The kinetostatic and dynamic modelling is then conducted to capture the displacements of any stage under loads acting at any stage and the natural frequency with the comparisons with FEA results. Finally, performance characteristics analysis for motion stage applications is detailed investigated to show how the change of the geometrical parameter can affect the performance characteristics, which provides initial optimal estimations. Results show that the smaller thickness of beams and larger dimension of cubic stages can improve the performance characteristics excluding natural frequency under allowable conditions. In order to improve the natural frequency characteristic, a stiffness-enhanced monolithic decoupled configuration that is achieved through employing more beams in the spatial modules or reducing the mass of each cubic stage mass can be adopted. In addition, an isotropic variation with different motion range along each axis and same payload in each leg is proposed. The redundant design for monolithic fabrication is introduced in this paper, which can overcome the drawback of monolithic fabrication that the failed compliant beam is difficult to replace, and extend the CPM’s life.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magnetic field inhomogeneity results in image artifacts including signal loss, image blurring and distortions, leading to decreased diagnostic accuracy. Conventional multi-coil (MC) shimming method employs both RF coils and shimming coils, whose mutual interference induces a tradeoff between RF signal-to-noise (SNR) ratio and shimming performance. To address this issue, RF coils were integrated with direct-current (DC) shim coils to shim field inhomogeneity while concurrently emitting and receiving RF signal without being blocked by the shim coils. The currents applied to the new coils, termed iPRES (integrated parallel reception, excitation and shimming), were optimized in the numerical simulation to improve the shimming performance. The objectives of this work is to offer a guideline for designing the optimal iPRES coil arrays to shim the abdomen.

In this thesis work, the main field () inhomogeneity was evaluated by root mean square error (RMSE). To investigate the shimming abilities of iPRES coil arrays, a set of the human abdomen MRI data was collected for the numerical simulations. Thereafter, different simplified iPRES(N) coil arrays were numerically modeled, including a 1-channel iPRES coil and 8-channel iPRES coil arrays. For 8-channel iPRES coil arrays, each RF coil was split into smaller DC loops in the x, y and z direction to provide extra shimming freedom. Additionally, the number of DC loops in a RF coil was increased from 1 to 5 to find the optimal divisions in z direction. Furthermore, switches were numerically implemented into iPRES coils to reduce the number of power supplies while still providing similar shimming performance with equivalent iPRES coil arrays.

The optimizations demonstrate that the shimming ability of an iPRES coil array increases with number of DC loops per RF coil. Furthermore, the z direction divisions tend to be more effective in reducing field inhomogeneity than the x and y divisions. Moreover, the shimming performance of an iPRES coil array gradually reach to a saturation level when the number of DC loops per RF coil is large enough. Finally, when switches were numerically implemented in the iPRES(4) coil array, the number of power supplies can be reduced from 32 to 8 while keeping the shimming performance similar to iPRES(3) and better than iPRES(1). This thesis work offers a guidance for the designs of iPRES coil arrays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In combination of the advantages of both parallel mechanisms and compliant mechanisms, a compliant parallel mechanism with two rotational DOFs (degrees of freedom) is designed to meet the requirement of a lightweight and compact pan-tilt platform. Firstly, two commonly-used design methods i.e. direct substitution and FACT (Freedom and Constraint Topology) are applied to design the configuration of the pan-tilt system, and similarities and differences of the two design alternatives are compared. Then inverse kinematic analysis of the candidate mechanism is implemented by using the pseudo-rigid-body model (PRBM), and the Jacobian related to its differential kinematics is further derived to help designer realize dynamic analysis of the 8R compliant mechanism. In addition, the mechanism’s maximum stress existing within its workspace is tested by finite element analysis. Finally, a method to determine joint damping of the flexure hinge is presented, which aims at exploring the effect of joint damping on actuator selection and real-time control. To the authors’ knowledge, almost no existing literature concerns with this issue.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since precise linear actuators of a compliant parallel manipulator suffer from their inability to tolerate the transverse motion/load in the multi-axis motion, actuation isolation should be considered in the compliant manipulator design to eliminate the transverse motion at the point of actuation. This paper presents an effective design method for constructing compliant parallel manipulators with actuation isolation, by adding the same number of actuation legs as the number of the DOF (degree of freedom) of the original mechanism. The method is demonstrated by two design case studies, one of which is quantitatively studied by analytical modelling. The modelling results confirm possible inherent issues of the proposed structure design method such as increased primary stiffness, introduced extra parasitic motions and cross-axis coupling motions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares the performances of two different optimisation techniques for solving inverse problems; the first one deals with the Hierarchical Asynchronous Parallel Evolutionary Algorithms software (HAPEA) and the second is implemented with a game strategy named Nash-EA. The HAPEA software is based on a hierarchical topology and asynchronous parallel computation. The Nash-EA methodology is introduced as a distributed virtual game and consists of splitting the wing design variables - aerofoil sections - supervised by players optimising their own strategy. The HAPEA and Nash-EA software methodologies are applied to a single objective aerodynamic ONERA M6 wing reconstruction. Numerical results from the two approaches are compared in terms of the quality of model and computational expense and demonstrate the superiority of the distributed Nash-EA methodology in a parallel environment for a similar design quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research reports on a project concerned with the relationship between the person and the environment in the context of achieving a contemplative or existential state – a state which can be experienced either consciously or subconsciously. The need for such a study originated with the desire to contribute to the design of multicultural spaces which could be used for a range of activities within the public and the personal arena, activities including contemplation, meditation and prayer. The concept of ‘sacred’ is explored in the literature review and in primary interviews with the participants of this study. Given that the word ‘sacred’ is highly value-laden and potentially alienating for some people, it was decided to use the more accessible term ‘contemplative’. The outcomes of the study inform the practice of interior design and architecture which tends currently to neglect the potential for all spaces to be existentially meaningful. Informed by phenomenological methodology, data were collected from a diverse group of people, using photo-elicitation and interviews. The technique of photo-elicitation proved to be highly effective in helping people reveal their everyday lived experience of contemplative spaces. Reflective analysis (Van Manen 2000) was used to explore the data collected. The initial stage of analysis produced three categories of data: varying conceptions of contemplation, aspects of the person involved in the contemplation, and aspects of environment involved in contemplation. From this, it was found that achieving a state of contemplation involves both the person and the environment in a dialectic process of unfolding. The unfolding has various physical, psycho-social, and existential dimensions or qualities which operate sequentially and simultaneously. Two concepts emerged as being central to unfolding: ‘Cleansing’ and ‘Nothingness’. Unfolding is found to comprise the Core; Distinction; Manifestation; Cleansing; Creation; and Sharing. This has a parallel with Mircea Eliade’s (1959) definition of sacred as something that manifests itself as different from the profane. The power of design, re-contextualization through utility and purpose, and the existential engagements between the person and environment are used as a basis for establishing the potential contribution of the study to interior design. In this way, the study makes a contribution to our understanding of how space and its elements inspire, support and sustain person environment interaction – particularly at the existential level – as well as to our understanding of the multi-dimensional and holistic nature of this interaction. In addition, it points to the need for a phenomenological re-conceptualisation of the design/client relationship. In summary, the contributions of this research are: the exploration of contemplative experience as sacred experience; an understanding of the design of space as creating engagement between person and environment; a rationale for the introduction of a phenomenological approach to the relationship between designer and clients; and raising awareness of the spiritual in a holistic approach to design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the optimal design of an active flow control device; Shock Control Bump (SCB) on suction and pressure sides of transonic aerofoil to reduce transonic total drag is investigated. Two optimisation test cases are conducted using different advanced Evolutionary Algorithms (EAs); the first optimiser is the Hierarchical Asynchronous Parallel Evolutionary Algorithm (HAPMOEA) based on canonical Evolutionary Strategies (ES). The second optimiser is the HAPMOEA is hybridised with one of well-known Game Strategies; Nash-Game. Numerical results show that SCB significantly reduces the drag by 30% when compared to the baseline design. In addition, the use of a Nash-Game strategy as a pre-conditioner of global control saves computational cost up to 90% when compared to the first optimiser HAPMOEA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Streaming SIMD extension (SSE) is a special feature embedded in the Intel Pentium III and IV classes of microprocessors. It enables the execution of SIMD type operations to exploit data parallelism. This article presents improving computation performance of a railway network simulator by means of SSE. Voltage and current at various points of the supply system to an electrified railway line are crucial for design, daily operation and planning. With computer simulation, their time-variations can be attained by solving a matrix equation, whose size mainly depends upon the number of trains present in the system. A large coefficient matrix, as a result of congested railway line, inevitably leads to heavier computational demand and hence jeopardizes the simulation speed. With the special architectural features of the latest processors on PC platforms, significant speed-up in computations can be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Computer simulation is a versatile and commonly used tool for the design and evaluation of systems with different degrees of complexity. Power distribution systems and electric railway network are areas for which computer simulations are being heavily applied. A dominant factor in evaluating the performance of a software simulator is its processing time, especially in the cases of real-time simulation. Parallel processing provides a viable mean to reduce the computing time and is therefore suitable for building real-time simulators. In this paper, we present different issues related to solving the power distribution system with parallel computing based on a multiple-CPU server and we will concentrate, in particular, on the speedup performance of such an approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parallel computing is currently used in many engineering problems. However, because of limitations in curriculum design, it is not always possible to offer students specific formal teaching in this topic. Furthermore, parallel machines are still too expensive for many institutions. The latest microprocessors, such as Intel’s Pentium III and IV, embody single instruction multiple-data (SIMD) type parallel features, which makes them a viable solution for introducing parallel computing concepts to students. Final year projects have been initiated utilizing SSE (streaming SIMD extensions) features and it has been observed that students can easily learn parallel programming concepts after going through some programming exercises. They can now experiment with parallel algorithms on their own PCs at home. Keywords

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chapter investigates Shock Control Bumps (SCB) on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB approach is used to decelerate supersonic flow on the suction/pressure sides of transonic aerofoil that leads delaying shock occurrence or weakening of shock strength. Such an AFC technique reduces significantly the total drag at transonic speeds. This chapter considers the SCB shape design optimisation at two boundary layer transition positions (0 and 45%) using an Euler software coupled with viscous boundary layer effects and robust Evolutionary Algorithms (EAs). The optimisation method is based on a canonical Evolution Strategy (ES) algorithm and incorporates the concepts of hierarchical topology and parallel asynchronous evaluation of candidate solution. Two test cases are considered with numerical experiments; the first test deals with a transition point occurring at the leading edge and the transition point is fixed at 45% of wing chord in the second test. Numerical results are presented and it is demonstrated that an optimal SCB design can be found to significantly reduce transonic wave drag and improves lift on drag (L/D) value when compared to the baseline aerofoil design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction Design is a fast developing branch of Industrial Design. The availability of cheap microprocessors and sensor electronics allow interactions between people and products that were until recently impossible. This has added additional layers of complexity to the design process. Novice designers find it difficult to effectively juggle these complexities and typically tend to focus on one aspect at a time. They also tend to take a linear, step-by-step approach to the design process in contrast to expert designers who pursue “parallel lines of thought” whilst simultaneously co-evolving both problem and solution. (Lawson, 1993) This paper explores an approach that encourages designers (in this case novice designers) to take a parallel rather than linear approach to the design process. It also addresses the problem of social loafing that tends to occur in team activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper derives from research-in-progress intending both Design Research (DR) and Design Science (DS) outputs; the former a management decision tool based in IS-Impact (Gable et al. 2008) kernel theory; the latter being methodological learnings deriving from synthesis of the literature and reflection on the DR ‘case study’ experience. The paper introduces a generic, detailed and pragmatic DS ‘Research Roadmap’ or methodology, deriving at this stage primarily from synthesis and harmonization of relevant concepts identified through systematic archival analysis of related literature. The scope of the Roadmap too has been influenced by the parallel study aim to undertake DR applying and further evolving the Roadmap. The Roadmap is presented in attention to the dearth of detailed guidance available to novice Researchers in Design Science Research (DSR), and though preliminary, is expected to evolve and gradually be substantiated through experience of its application. A key distinction of the Roadmap from other DSR methods is its breadth of coverage of published DSR concepts and activities; its detail and scope. It represents a useful synthesis and integration of otherwise highly disparate DSR-related concepts.