966 resultados para Palmitic acid
Resumo:
Drying oils, and in particular linseed oil, were the most common binding media employed in painting between XVI and XIX centuries. Artists usually operated some pre-treatments on the oils to obtain binders with modified properties, such as different handling qualities or colour. Oil processing has a key role on the subsequent ageing of and degradation of linseed oil paints. In this thesis a multi-analytical approach was adopted to investigate the drying, polymerization and oxidative degradation of the linseed oil paints. In particular, thermogravimetry analysis (TGA), yielding information on the macromolecular scale, were compared with gas-chromatography mass-spectrometry (GC-MS) and direct exposure mass spectrometry (DEMS) providing information on the molecular scale. The study was performed on linseed oils and paint reconstructions prepared according to an accurate historical description of the painting techniques of the 19th century. TGA revealed that during ageing the molecular weight of the oils changes and that higher molecular weight fractions formed. TGA proved to be an excellent tool to compare the oils and paint reconstructions. This technique is able to highlight the different physical behaviour of oils that were processed using different methods and of paint layers on the basis of the different processed oil and /or the pigment used. GC/MS and DE-MS were used to characterise the soluble and non-polymeric fraction of the oils and paint reconstructions. GC/MS allowed us to calculate the ratios of palmitic to stearic acid (P/S), and azelaic to palmitic acid (A/P) and to evaluate effects produced by oil pre-treatments and the presence of different pigments. This helps to understand the role of the pre-treatments and of the pigments on the oxidative degradation undergone by siccative oils during ageing. DE-MS enabled the various molecular weight fractions of the samples to be simultaneously studied, and thus helped to highlight the presence of oxidation and hydrolysis reactions, and the formation of carboxylates that occur during ageing and with the changing of the oil pre-treatments and the pigments. The combination of thermal analysis with molecular techniques such as GC-MS, DEMS and FTIR enabled a model to be developed, for unravelling some crucial issues: 1) how oil pre-treatments produce binders with different physical-chemical qualities, and how this can influence the ageing of an oil paint film; 2) which is the role of the interaction between oil and pigments in the ageing and degradation process.
Resumo:
Hepatocellular carcinoma (HCC) is one of the commonest causes of death from cancer. A plethora of metabolomic investigations of HCC have yielded molecules in biofluids that are both up- and down-regulated but no real consensus has emerged regarding exploitable biomarkers for early detection of HCC. We report here a different approach, a combined transcriptomics and metabolomics study of energy metabolism in HCC. A panel of 31 pairs of HCC tumors and corresponding nontumor liver tissues from the same patients was investigated by gas chromatography-mass spectrometry (GCMS)-based metabolomics. HCC was characterized by ∼2-fold depletion of glucose, glycerol 3- and 2-phosphate, malate, alanine, myo-inositol, and linoleic acid. Data are consistent with a metabolic remodeling involving a 4-fold increase in glycolysis over mitochondrial oxidative phosphorylation. A second panel of 59 HCC that had been typed by transcriptomics and classified in G1 to G6 subgroups was also subjected to GCMS tissue metabolomics. No differences in glucose, lactate, alanine, glycerol 3-phosphate, malate, myo-inositol, or stearic acid tissue concentrations were found, suggesting that the Wnt/β-catenin pathway activated by CTNNB1 mutation in subgroups G5 and G6 did not exhibit specific metabolic remodeling. However, subgroup G1 had markedly reduced tissue concentrations of 1-stearoylglycerol, 1-palmitoylglycerol, and palmitic acid, suggesting that the high serum α-fetoprotein phenotype of G1, associated with the known overexpression of lipid catabolic enzymes, could be detected through metabolomics as increased lipid catabolism. Conclusion: Tissue metabolomics yielded precise biochemical information regarding HCC tumor metabolic remodeling from mitochondrial oxidation to aerobic glycolysis and the impact of molecular subtypes on this process.
Resumo:
The effect of location of fruit in canopies of hedgerow olive trees (Olea europaea L., cv. ‘Arbequina’) on quality of virgin oil was tested by analyzing oils extracted from different height layers and faces of 9 olive hedgerows (6 North-South oriented and 3 East-West). Although sensory attributes were not different other oil quality parameters may be significantly modified by fruit position. In some hedgerows, oils extracted from fruits harvested from higher layers exhibited significantly higher stability against oxidation, along with higher palmitic acid, linoleic acid and phenol contents, but lower oleic acid content. Oils extracted from fruits harvested from East and North facing hedgerows oriented North-South and East-West, respectively, exhibited higher oleic contents and lower saturated and polyunsaturated fatty acid contents. The mean phenol content of oils extracted from fruits from a North-South oriented hedgerow was significantly greater from one of the East-West oriented hedgerows. These findings may be relevant for the design of future olive hedgerows destined for olive oil production.
Resumo:
Simulations of oil yield and quality are presented for N–S oriented, hedgerow olive orchards of a range of structures (viz. canopy depth, canopy width, canopy slope and row spacing) using responses of yield and quality parameters to solar irradiance on canopy walls measured in a range of orchards, cv. Arbequina, in Spain. Results reveal that orchard yield of hedgerows of rectangular shape reaches a maximum when canopy depth equals alley width (row spacing−canopy width) and decreases at wider spacing, and/or with wider canopies, as the length of productive row decreases per unit area. Maximum yields for 4-m deep canopies were 2885 kg ha−1 at 1-m width and 5-m row spacing, 2400 kg ha−1 at 2-m width and 6-m spacing, and 2050 kg ha−1 at 3-m width and 7-m spacing. Illumination of canopies can be increased by applying slopes to form rhomboidal hedgerows. Substantial yield advantage can be achieved, especially for wide hedgerows, partly by closer row spacing that increases row length per unit area. By comparison, responses to latitude in the range 30–40◦ are small and do not warrant different row spacing. Oil quality parameters also respond to orchard structure. Responses are presented for oleic and palmitic acid, stability, and maturity index. Oleic acid content declines as alley spacing increases and is smaller, shallow than in wide, deep canopies. Palmitic acid content, stability, and maturity index increase with row alley spacing and are greater in narrow, shallow than in wide, deep canopies.
Resumo:
The effect of location of fruit in canopies of hedgerow olive trees (Olea europaea L., cv. ‘Arbequina’) on quality of virgin oil was tested by analyzing oils extracted from different height layers and faces of nine olive hedgerows (6 North–South oriented and 3 East– West). Although sensory attributes were not different, other oil quality parameters may be significantly modified by fruit position. Oils extracted from fruits harvested from higher layers exhibited significantly higher stability against oxidation, along with higher palmitic acid, linoleic acid and phenol contents, but lower oleic acid content. Oils extracted from fruits harvested from East and North facing hedgerows oriented North–South and East–West, respectively, exhibited higher oleic contents and lower saturated and polyunsaturated fatty acid contents. The mean phenol content of oils extracted from fruits from a North–South oriented hedgerow was significantly greater from one of the East–West oriented hedgerows. These findings may be relevant for the design of future olive hedgerows destined for olive oil production.
Resumo:
GAIP (G Alpha Interacting Protein) is a member of the recently described RGS (Regulators of G-protein Signaling) family that was isolated by interaction cloning with the heterotrimeric G-protein Gαi3 and was recently shown to be a GTPase-activating protein (GAP). In AtT-20 cells stably expressing GAIP, we found that GAIP is membrane-anchored and faces the cytoplasm, because it was not released by sodium carbonate treatment but was digested by proteinase K. When Cos cells were transiently transfected with GAIP and metabolically labeled with [35S]methionine, two pools of GAIP—a soluble and a membrane-anchored pool—were found. Since the N terminus of GAIP contains a cysteine string motif and cysteine string proteins are heavily palmitoylated, we investigated the possibility that membrane-anchored GAIP might be palmitoylated. We found that after labeling with [3H]palmitic acid, the membrane-anchored pool but not the soluble pool was palmitoylated. In the yeast two-hybrid system, GAIP was found to interact specifically with members of the Gαi subfamily, Gαi1, Gαi2, Gαi3, Gαz, and Gαo, but not with members of other Gα subfamilies, Gαs, Gαq, and Gα12/13. The C terminus of Gαi3 is important for binding because a 10-aa C-terminal truncation and a point mutant of Gαi3 showed significantly diminished interaction. GAIP interacted preferentially with the activated (GTP) form of Gαi3, which is in keeping with its GAP activity. We conclude that GAIP is a membrane-anchored GAP with a cysteine string motif. This motif, present in cysteine string proteins found on synaptic vesicles, pancreatic zymogen granules, and chromaffin granules, suggests GAIP’s possible involvement in membrane trafficking.
Resumo:
Recent evidence indicates that long-chain polyunsaturated fatty acids (PUFAs) can prevent cardiac arrhythmias by a reduction of cardiomyocyte excitability. This was shown to be due to a modulation of the voltage-dependent inactivation of both sodium (INa) and calcium (ICa) currents. To establish whether PUFAs also regulate neuronal excitability, the effects of PUFAs on INa and ICa were assessed in CA1 neurons freshly isolated from the rat hippocampus. Extracellular application of PUFAs produced a concentration-dependent shift of the voltage dependence of inactivation of both INa and ICa to more hyperpolarized potentials. Consequently, they accelerated the inactivation and retarded the recovery from inactivation. The EC50 for the shift of the INa steady-state inactivation curve was 2.1 +/- 0.4 microM for docosahexaenoic acid (DHA) and 4 +/- 0.4 microM for eicosapentaenoic acid (EPA). The EC50 for the shift on the ICa inactivation curve was 2.1 +/- 0.4 for DHA and > 15 microM for EPA. Additionally, DHA and EPA suppressed both INa and ICa amplitude at concentrations > 10 microM. PUFAs did not affect the voltage dependence of activation. The monounsaturated oleic acid and the saturated palmitic acid were virtually ineffective. The combined effects of the PUFAs on INa and ICa may reduce neuronal excitability and may exert anticonvulsive effects in vivo.
Resumo:
The G-protein-coupled metabotropic glutamate receptor mGluR1 alpha and the ionotropic glutamate receptor GluR6 were examined for posttranslational palmitoylation. Recombinant receptors were expressed in baculovirus-infected insect cells or in human embryonic kidney cells and were metabolically labeled with [3H]palmitic acid. The metabotropic mGluR1 alpha receptor was not labeled whereas the GluR6 kainate receptor was labeled after incubation with [3H]palmitate. The [3H]palmitate labeling of GluR6 was eliminated by treatment with hydroxylamine, indicating that the labeling was due to palmitoylation at a cysteine residue via a thioester bond. Site-directed mutagenesis was used to demonstrate that palmitoylation of GluR6 occurs at two cysteine residues, C827 and C840, located in the carboxyl-terminal domain of the molecule. A comparison of the electrophysiological properties of the wild-type and unpalmitoylated mutant receptor (C827A, C840A) showed that the kainate-gated currents produced by the unpalmitoylated mutant receptor were indistinguishable from those of the wild-type GluR6. The unpalmitoylated mutant was a better substrate for protein kinase C than the wild-type GluR6 receptor. These data indicate that palmitoylation may not modulate kainate channel function directly but instead affect function indirectly by regulating the phosphorylation state of the receptor.
Resumo:
The envelope proteins of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) were found to be modified by fatty acylation of the transmembrane protein subunit gp41. The precursor gp160 was also palmitoylated prior to its cleavage into the gp120 and gp41 subunits. The palmitic acid label was sensitive to treatment with hydroxylamine or 2-mercaptoethanol, indicating that the linkage is through a thioester bond. Treatment with cycloheximide did not prevent the incorporation of [3H]palmitic acid into the HIV envelope protein, indicating that palmitoylation is a posttranslation modification. In contrast to other glycoproteins, which are palmitoylated at cysteine residues within or close to the membrane-spanning hydrophobic domain, the palmitoylation of the HIV-1 envelope proteins occurs on two cysteine residues, Cys-764 and Cys-837, which are 59 and 132 amino acids, respectively, from the proposed membrane-spanning domain of gp41. Sequence comparison revealed that one of these residues (Cys-764) is conserved in the cytoplasmic domains of almost all HIV-1 isolates and is located very close to an amphipathic region which has been postulated to bind to the plasma membrane.
Resumo:
Os organismos marinhos constituem uma fonte potencial de metabólitos secundários biologicamente ativos. Neste contexto, os micro-organismos isolados de algas marinhas, dentre eles fungos endofíticos, representam alvos para a pesquisa de novas substâncias com potencial farmacológico pronunciado. Substâncias naturais provenientes de espécies de fungos associados às algas marinhas vêm sendo bastante utilizadas em formulações fotoprotetoras devido à ação antioxidante e ao potencial contra a radiação solar. Deste modo, o presente trabalho teve como objetivo a investigação biológica e química dos fungos endofíticos marinhos pertencentes à família Xylariaceae, o Annulohypoxylon stygium, o Cladosporium sp. e o Acremonium implicatum (Hypocreaceae). A princípio, foi realizado um screening para avaliar a absorção de luz ultravioleta na faixa do UVA e UVB pelos extratos obtidos em escala piloto destes fungos endofíticos associados às algas marinhas. O extrato do fungo A. stygium apresentou intensa absorção na região do UV, mostrando-se promissor para a produção de metabólitos secundários com ação fotoprotetora. Além do ensaio proposto, foi realizada a avaliação do potencial antibacteriano e antifúngico da espécie A. stygium. O estudo químico em escala ampliada deste fungo proporcionou o isolamento e identificação de uma substância inédita da classe derivada da 2,5- dicetopiperazina, 3-benzilideno-2-metil-hexahidro-pirrolo [1,2-?] pirazina-1,4-diona (Sf3), e além desta, foram isolados mais quatro metabólitos como, os diasteroisômeros 1-fenil-1,2- propanediol (Sd2) e 1-fenil-1,2-propanediol (Sd3), 1,3-benzodioxole-5-metanol (Sc1), 1,2- propanodiol-1-(1,3-benzodioxol-5-il) (Se1). Ainda foi possível a desreplicação de substâncias via cromatografia gasosa acoplada à espectrometria de massas (CG-EM), entre elas o ácido palmítico, palmitato de metila, ácido metil linoléico, ácido oléico, álcool benzílico e o piperonal. Quanto ao estudo da atividade biológica, não foi observado potencial antibacteriano e antifúngico para os extratos e frações do fungo. Entretanto, notouse um potencial como fotoprotetor in vitro para as frações n-Hexano/AcOEt (2:3) e n- Hexano/AcOEt (1:4) obtidas a partir do extrato do cultivo de 28 dias do fungo A. stygium, extraído com solventes diclorometano/metanol (CH2Cl2/MeOH 2:1) e para a substância (Sf3) isolada do mesmo. Desta forma, o estudo químico e biológico do fungo Annulohypoxylon stygium demonstrou potencial para a produção de metabólitos secundários com atividade fotoprotetora, visto que uma estrutura inédita com esta atividade foi isolada e identificada como produto natural.
Resumo:
Nas últimas décadas, diversos estudos têm demonstrado os efeitos nocivos dos ácidos graxos trans à saúde. Consequentemente, diversas agências reguladoras de saúde e sociedades responsáveis pela elaboração de diretrizes nutricionais recomendaram a redução do consumo desses ácidos graxos. Deste modo, a indústria de alimentos vem adequando seus produtos a fim de substituir os ácidos graxos trans por gorduras interesterificadas, porém seus efeitos sobre o desenvolvimento da aterosclerose não foram ainda totalmente elucidados. Portanto, o objetivo deste estudo foi avaliar o efeito de gorduras interesterificadas contendo principalmente ácido graxo palmítico ou esteárico sobre o desenvolvimento da aterosclerose. Desta forma, camundongos knockout para o receptor de LDL (LDLr-KO) recém-desmamados foram alimentados por 16 semanas com dietas hiperlipídicas (40% do valor calórico total sob forma de gordura) contendo principalmente ácidos graxos poli-insaturados (POLI), trans (TRANS), palmítico (PALM), palmítico interesterificado (PALM INTER), esteárico (ESTEAR) ou esteárico interesterificado (ESTEAR INTER) para determinação de concentrações plasmáticas de colesterol total e triglicérides; perfil de lipoproteínas; conteúdo de lípides (Oil Red O) e colágeno (Picrosirius Red) e infiltrado de macrófagos (imuno-histoquímica) na área de lesão aterosclerótica; expressão e conteúdo proteico de citocinas na aorta; dosagem das citocinas secretadas por macrófagos de peritônio estimulados ou não com lipopolissacarídeo (LPS); efluxo celular de colesterol mediado pela apo-AI e HDL2. Os resultados mostraram que os animais que consumiram a gordura interesterificada contendo ácido palmítico (PALM INTER) desenvolveram importante lesão aterosclerótica em comparação aos grupos PALM, ESTEAR, ESTEAR INTER e POLI, resultados confirmados pelo conteúdo de colágeno na lesão. Apesar do processo de interesterificação não ter alterado as concentrações plasmáticas de lípides, conforme verificado entre os grupos PALM vs PALM INTER e ESTEAR vs ESTEAR INTER, o acúmulo de colesterol na partícula de LDL foi similar entre os grupos PALM INTER e TRANS. Além desse efeito sobre o perfil de lipoproteínas, macrófagos do peritônio de camundongos que consumiram PALM INTER secretaram significativamente mais IL-1beta, IL-6 e MCP-1 em comparação aos demais grupos. Esse efeito pró-inflamatório foi confirmado na aorta, onde se observou maior expressão de TNF-alfa e IL-1beta para o grupo PALM INTER em comparação a PALM. Tal insulto inflamatório foi similar ao provocado por TRANS. Esses efeitos deletérios do PALM INTER podem ser parcialmente atribuídos ao acúmulo de colesterol nos macrófagos, promovido pelo prejuízo no efluxo de colesterol mediado pela apo-AI e HDL2, bem como aumento da expressão de receptores envolvidos na captação de LDL modificada (Olr-1) e diminuição daqueles envolvidos na remoção intracelular de colesterol (Abca1 e Nr1h3) na parede arterial. Como conclusão, as gorduras interesterificadas contendo ácido palmítico favorecem o acúmulo de colesterol nas partículas de LDL e em macrófagos, ativando o processo inflamatório, o que conjuntamente contribuiu para maior desenvolvimento de lesão aterosclerótica
Resumo:
The ann of this study was to investigate the incorporation of a model antigen, fluorescently labelled ovalbumin (FITC-OVA), into various colloidal particles including immune stimulating complexes (ISCOMs), liposomes, ring and worm-like micelles, lamellae and lipidic/layered structures that are formed from various combinations of the triterpene saponin Quil A, cholesterol and phosphatidylethanolamine (PE) following hydration of PE/cholesterol lipid films with aqueous Solutions of Quil A. Colloidal dispersions of these three components were also prepared by the dialysis method for comparison. FITC-OVA was conjugated with palmitic acid (P) and PE to produce P-FITC-OVA and PE-FITC-OVA, respectively. Both P-FITC-OVA and PE-FITC-OVA could be incorporated in all colloidal structures whereas FITC-OVA was incorporated only into liposomes. The incorporation of PE-FITC-OVA into all colloidal structures was significantly higher than P-FITC-OVA (P < 0.05). The degree of incorporation of protein was in the order: ring and worm-like micelles < liposomes and lipidic/layered structures < ISCOMs and lamellae. The incorporation of protein into the various particles prepared by the lipid film hydration method was similar to those for colloidal particles prepared by the dialysis method (provided both methods lead to the formation of the same colloidal structures). In the case of different colloidal structures arising due to the preparation method, differences in encapsulation efficiency were found (P < 0.05) for formulations with the same polar lipid composition. This study demonstrates that the various colloidal particles formed as a result of hydrating PE/cholesterol lipid films with different amounts of Quil A are capable of incorporating antigen, provided it is amphipathic. Some of these colloidal particles may be used as effective vaccine delivery systems. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.
Resumo:
Intestinal chiral inversion of ibuprofen is still lacking direct evidence. In a preliminary experiment, ibuprofen was found to undergo inversion in Caco-2 cells. This investigation was thus conducted to determine the characteristics and influence of some biochemical factors on the chiral inversion of ibuprofen in Caco-2 cells. The effects of substrate concentration (2.5-40 mu g/ml), cell density (0.5-2 x 10(6) cells/ well), content of serum (0-20%), coexistence of S ibuprofen (corresponding doses), sodium azide (10mm), exogenous Coenzyme A (CoA) (0.1 - 0.4 mm),. and palmitic acid (5-25 mu m) on inversion were examined. A stereoselective HPLC method based on the Chromasil-CHI-TBB column was developed for quantitative analysis of the drug in cell culture medium. The inversion ratio (F-i) and elimination rate constant were calculated as the indexes of inversion extent. Inversion of ibuprofen in Caeo-2 cells was found to be both dose and cell density dependent, indicating saturable characteristics. Addition of serum significantly inhibited the inversion, to an extent of 2.7 fold decrease at 20% content. Preexistence of S enantiomer exerted a significant inhibitory effect (p < 0.01 for all tests). Sodium azide decreased the inversion ratio from 0.43 to 0.32 (p < 0.01). Exogenous CoA and palmitic acid significantly promoted the inversion at all tested doses (p < 0.01 for all tests). This research provided strong evidence to the capacity and capability of intestinal chiral inversion. Although long incubation times up to 120 h were required, Caco-2 cells should be a suitable model for chiral inversion research of 2-APAs considering the human-resourced and well-defined characteristics from the present study.
Resumo:
Functional effects of acute and prolonged (48 h) exposure to the biguanide drug metformin were examined in the clonal pancreatic ß-cell line, BRIN-BD11. Effects of metformin on prolonged exposure to excessive increased concentrations of glucose and palmitic acid were also assessed. In acute 20-min incubations, 12.5-50 µm metformin did not alter basal (1.1 mm glucose) or glucose-stimulated (16.7 mm glucose) insulin secretion. However, higher concentrations of metformin (100-1000 µm) increased (1.3-1.5-fold; p