959 resultados para PT-SN ELECTROCATALYSTS
Resumo:
Since the discovery of Nb(3)Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb(3)Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb(3)Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb(3)Sn wires reported up to now.
Resumo:
The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the present work we study the magnetostriction of Fe(91)Sn(9) and Fe(80)Sn(20) polycrystalline samples produced by arc melting and heat treated at temperatures of 1153 K for 6 h and 1023 K for 24 h, looking for high values of magnetostriction as in Fe-Ga alloys. Magnetostriction, as well as saturation magnetization measurements, was carried out at temperatures close to 203 K in the magnetic field interval 0 to 1.5 T. Results of magnetostriction on sample Fe(91)Sn(9), which has almost pure alpha-phase, show magnitude and behavior similar to pure Fe. The two additional Fe(80)Sn(20) samples have a combination of alpha-phase plus either Fe(5)Sn(3) or Fe(3)Sn(2) and show a peculiar behavior of the magnetostriction for mu(0)H < 0.3 T the magnetostriction grows from zero to saturation of the alpha-phase. Following, for mu(0)H > 0.3 T, the magnetostriction starts again to grow linearly with the field, but saturation was not observed up to 5 T. This behavior was attributed to the presence of Fe(5)Sn(3) or Fe(3)Sn(2) phases in these samples that are also ferromagnetic as the alpha-phase is. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Alloys of Al-Sn and Al-Si are widely used in tribological applications such as cylinder liners and journal bearings. Studies of the influence of the as-cast microstructures of these alloys on the final mechanical properties and wear resistance can be very useful for planning solidification conditions in order to permit a desired level of final properties to be achieved. The aim of the present study was to contribute to a better understanding about the relationship between the scale of the dendritic network and the corresponding mechanical properties and wear behavior. The Al-Sn (15 and 20 wt pct Sn) and Al-Si (3 and 5 wt pct Si) alloys were directionally solidified under unsteady-state heat flow conditions in water-cooled molds in order to permit samples with a wide range of dendritic spacings to be obtained. These samples were subjected to tensile and wear tests, and experimental quantitative expressions correlating the ultimate tensile strength (UTS), yield tensile strength, elongation, and wear volume to the primary dendritic arm spacing (DAS) have been determined. The wear resistance was shown to be significantly affected by the scale of primary dendrite arm spacing. For Al-Si alloys, the refinement of the dendritic array improved the wear resistance, while for the Al-Sn alloys, an opposite effect was observed, i.e., the increase in primary dendrite arm spacing improved the wear resistance. The effect of inverse segregation, which is observed for Al-Sn alloys, on the wear resistance is also discussed.
Resumo:
The influence of Sri in Fe(2)O(3) thin films is addressed. The presence of the tin ions decreases the Fe(2)O(3) particle sizes and surface roughness decreasing of the films` surface is observed as a consequence. X-ray diffraction and atomic force microscopy measurements together with literature results support this phenomenon to be related to the segregation of the additive onto the surface and consequently surface energy decrease, which constitutes the driving force for the microstructure modification, similarly to results previously obtained for powders with same compositions. The effect of the anions introduced in the system as counter-ions of the precursors is also discussed.
Resumo:
The mechanical properties of a typical sintered aluminium alloy (Al-4.4Cu-0.8Si-0.5Mg) have been improved by the simultaneous use of trace additions of Sn, high sintering temperatures and modified heat treatments. Tin increases densification, but the Sn concentration is limited to less than or equal to 0.1wt% because incipient melting occurs during solution treatment at higher Sn levels. A sintering temperature of 620 degrees C increases the liquid volume over that formed at the conventional 590 degrees C sintering temperature. However, the higher sintering temperature results in the formation of an embrittling phase which can be eliminated if solution treatment is incorporated into the sintering cycle (a modified TS heat treatment). These conditions produce a tensile strength of 375 MPa, an increase of nearly 20% over the unmodified alloy. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
We prove that for any real number p with 1 p less than or equal to n - 1, the map x/\x\ : B-n --> Sn-1 is the unique minimizer of the p-energy functional integral(Bn) \delu\(p) dx among all maps in W-1,W-p (B-n, Sn-1) with boundary value x on phiB(n).
Resumo:
The electrochemical oxidation of ethanol at Sn((1-x))Ir (x) O(2) electrodes (with x = 0.01, 0.05, 0.1 and 0.3) was studied in 0.1 mol L(-1) HClO(4) solution. Electrolysis experiments were carried out and the reaction products were analyzed by Liquid Chromatography. It was found that the amounts of the reaction products depended on the composition of the electrode. In situ infrared reflectance spectroscopy measurements were performed to identify the adsorbed intermediates and to postulate a reaction mechanism for ethanol electrooxidation on these electrode materials. As evidence, acetaldehyde and acetic acid were formed through a successive reaction process. Carbon dioxide was also identified as the end product, showing that the cleavage of the carbon-carbon bond occurred. These results indicate that the synthesized catalysts are able to lead to the total combustion of organic compounds. Analysis of the water bending band at different potentials illustrated its role at the electrode interface.
Resumo:
Carbon-supported catalysts containing platinum and molybdenum oxide are prepared by thermal decomposition of polymeric precursors. The Pt(y)Mo(z)O(x)/C materials are characterized by energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The catalysts present a well-controlled stoichiometry and nanometric particles. Molybdenum is present mainly as the MoO(3) orthorhombic structure, and no Pt alloys are detected. The voltammetric behavior of the electrodes is investigated; a correlation with literature results for PtMo/C catalysts prepared by other methods is established. The formation of soluble species and the aging effect are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.
Resumo:
Background Reports of iatrogenic thermal injuries during laparoscopic surgery using new generation vessel-sealing devices, as well as anecdotal reports of hand burn injuries during hand-assisted surgeries, have evoked questions about the temperature safety profile and the cooling properties of these instruments. Methods This study involved video recording of temperatures generated by different instruments (Harmonic ACE [ACE], Ligasure V [LV], and plasma trisector [PT]) applied according the manufacturers` pre-set settings (ACE setting 3; LV 3 bars, and the PT TR2 50W). The video camera used was the infrared Flex Cam Pro directed to three different types of swine tissue: (1) peritoneum (P), (2) mesenteric vessels (MV), and (3) liver (L). Activation and cooling temperature and time were measured for each instrument. Results The ACE device produced the highest temperatures (195.9 degrees +/- 14.5 degrees C) when applied against the peritoneum, and they were significantly higher than the other instruments (LV = 96.4 degrees +/- 4.1 degrees C, and PT = 87 degrees +/- 2.2 degrees C). The LV and PT consistently yielded temperatures that were < 100 degrees C independent of type of tissue or ""on""/ ""off"" mode. Conversely, the ACE reached temperatures higher than 200 degrees C, with a surprising surge after the instrument was deactivated. Moreover, temperatures were lower when the ACE was applied against thicker tissue (liver). The LV and PT cooling times were virtually equivalent, but the ACE required almost twice as long to cool. Conclusions The ACE increased the peak temperature after deactivation when applied against thick tissue (liver), and the other instruments inconsistently increased peak temperatures after they were turned off, requiring few seconds to cool down. Moreover, the ACE generated very high temperatures (234.5 degrees C) that could harm adjacent tissue or the surgeon`s hand on contact immediately after deactivation. With judicious use, burn injury from these instruments can be prevented during laparoscopic procedures. Because of the high temperatures generated by the ACE device, particular care should be taken when it is used during laparoscopy.
Resumo:
OBJETIVO: este estudo teve como objetivo avaliar por meio de análise cefalométrica as diferenças nas proporções faciais de crianças respiradoras bucais e nasais. FORMA DE ESTUDO: coorte transversal. MATERIAL E MÉTODO: Foram selecionadas 60 crianças entre 6 e 10 anos que, após avaliação otorrinolaringológica para o diagnóstico do tipo de respiração, foram divididas em dois grupos: grupo I, constituído de crianças respiradoras bucais, com elevado grau de obstrução das vias aéreas e grupo II, composto de crianças respiradoras nasais. Os pacientes foram submetidos à avaliação ortodôntica por meio de radiografias cefalométricas em norma lateral, a fim de avaliar as proporções faciais, através das seguintes medidas cefalométricas: SN.GoGn, ArGo.GoMe, N-Me, N-ENA, ENA-Me, S-Go, S-Ar, Ar-Go; e os seguintes índices: iAF=S-Go / N-Me, iAFA=ENA-Me / N-Me e iPFA=N-ENA / ENA-Me. RESULTADO: Foi constatada que a inclinação do plano mandibular (SN.GoGn) nos pacientes respiradores bucais foi estatisticamente maior que nos respiradores nasais, enquanto que a proporção da altura facial posterior e anterior (iAF), e da altura facial anterior superior e inferior (iPFA) foram estatisticamente menores nos pacientes bucais, indicando altura facial posterior menor que a anterior e altura facial anterior inferior aumentada nesses pacientes. CONCLUSÃO: Pode-se concluir, então, que os respiradores bucais tendem a apresentar maior inclinação mandibular e padrão de crescimento vertical, evidenciando a influência da função respiratória no desenvolvimento craniofacial.
Resumo:
OBJETIVO: avaliar a possível influência do padrão respiratório na determinação das dimensões craniofaciais, tendo como base a análise cefalométrica de Tweed-Merrifield, acrescidas do ângulo SN-GoGn e do ângulo do eixo Y. METODOLOGIA: A amostra selecionada para o presente estudo constou de 50 telerradiografias, tomadas em norma lateral e posição natural de cabeça, de jovens do sexo feminino, na faixa etária de 9 a 12 anos (idade média de 10 anos e 5 meses) com maloclusão de Classe I. Após o diagnóstico do padrão respiratório, dividiu-se a amostra em dois grupos, assim constituídos: grupo controle - 25 telerradiografias de respiradores nasais e grupo experimental - 25 telerradiografias de respiradores predominantemente bucais. RESULTADOS: foram submetidos à análise descritiva (média e desvio padrão), teste F e teste "t" de Student com nível de significância de 5%, através dos quais foi possível constatar não existir diferença significativa entre os grupos com respiração nasal quando comparado com o grupo de respiração predominantemente bucal para nenhumas das grandezas estudadas.
Resumo:
Esse artigo discute especificamente o feito guerreiro de Narâm-Sîn e a consulta divinatória associada a ele que formou uma longa tradição memorialística na Mesopotâmia entre os séculos XVIII a. C. e III a. C. Este longo processo conservou e propagou a memória do feito, revelando uma série de metamorfoses nas sentenças e suas interpretações. Adivinhos e escribas tiveram papel central nesta dinâmica de formação da memória e legitimação do fato. Neste quadro de formulação historiográfica, composto por documentação rarefeita, observa-se como os mesopotâmios passaram a admitir que o passado poderia servir como um reservatório de experiências para conhecer melhor o presente.
Resumo:
Three different methods were used to introduce 1.0 wt.% of Pt in bifunctional Pt/MCM-22 zeolite catalysts: ion exchange with Pt(NH3)(4)(2+), incipient wetness impregnation with PtCl6H2 and mechanical mixture with Pt/Al2O3. The Pt dispersion was estimated by transmission electron microscopy and the hydrogenating activity with toluene hydrogenation at 110 degrees C. From these experiments, it can be concluded that with the ion exchanged sample, platinum was located within the inner micropores and on the outer surface, whereas with the impregnated one, platinum was essentially on the outer surface under the form of large particles. With all the samples there is a fast initial decrease in the activity for n-hexane hydroisomerisation at 250 degrees C. With exchanged and impregnated samples, this decrease is followed by a plateau, the activity value being then higher with impregnated sample. For the sample prepared by mechanical mixture a continuous decrease in activity can be observed. All these differences can be related with the distinct locations of Pt.