869 resultados para PROPORTIONAL HAZARD AND ACCELERATED FAILURE MODELS
Resumo:
[EN]The Mallows and Generalized Mallows models are compact yet powerful and natural ways of representing a probability distribution over the space of permutations. In this paper we deal with the problems of sampling and learning (estimating) such distributions when the metric on permutations is the Cayley distance. We propose new methods for both operations, whose performance is shown through several experiments. We also introduce novel procedures to count and randomly generate permutations at a given Cayley distance both with and without certain structural restrictions. An application in the field of biology is given to motivate the interest of this model.
Resumo:
[EN]In this paper we deal with distributions over permutation spaces. The Mallows model is the mode l in use. The associated distance for permutations is the Hamming distance.
Resumo:
[EN]Probability models on permutations associate a probability value to each of the permutations on n items. This paper considers two popular probability models, the Mallows model and the Generalized Mallows model. We describe methods for making inference, sampling and learning such distributions, some of which are novel in the literature. This paper also describes operations for permutations, with special attention in those related with the Kendall and Cayley distances and the random generation of permutations. These operations are of key importance for the efficient computation of the operations on distributions. These algorithms are implemented in the associated R package. Moreover, the internal code is written in C++.
Resumo:
Changes in the quality of canned tilapia packed in oil and tomato sauce at ambient and accelerated temperatures were examined by microbiological and sensory evaluation. Canned tilapia were found to be microbiologically stable and organoleptically acceptable after six months storage period. Total viable count (TVC) were generally low (2.5 x 10 super(2)). Thermophilic organisms (Clostridium) were absent in all samples. The yield of edible part of tilapia was 72% after dressing. Pre-cooking of tilapia resulted in a loss of 21.5% of its dressed weight. Comparison of canned tilapia with available canned fishes (geisha and bonga) showed similar trends in the taste, proximate composition, microbiological stability and sensory scores.The possibility for investment in tilapia cannary was also investigated. It was found that production of canned tilapia will be economically viable if a ten hectare tilapia farm is used as a source of raw materials.
Resumo:
The use of transmission matrices and lumped parameter models for describing continuous systems is the subject of this study. Non-uniform continuous systems which play important roles in practical vibration problems, e.g., torsional oscillations in bars, transverse bending vibrations of beams, etc., are of primary importance.
A new approach for deriving closed form transmission matrices is applied to several classes of non-uniform continuous segments of one dimensional and beam systems. A power series expansion method is presented for determining approximate transmission matrices of any order for segments of non-uniform systems whose solutions cannot be found in closed form. This direct series method is shown to give results comparable to those of the improved lumped parameter models for one dimensional systems.
Four types of lumped parameter models are evaluated on the basis of the uniform continuous one dimensional system by comparing the behavior of the frequency root errors. The lumped parameter models which are based upon a close fit to the low frequency approximation of the exact transmission matrix, at the segment level, are shown to be superior. On this basis an improved lumped parameter model is recommended for approximating non-uniform segments. This new model is compared to a uniform segment approximation and error curves are presented for systems whose areas very quadratically and linearly. The effect of varying segment lengths is investigated for one dimensional systems and results indicate very little improvement in comparison to the use of equal length segments. For purposes of completeness, a brief summary of various lumped parameter models and other techniques which have previously been used to approximate the uniform Bernoulli-Euler beam is a given.