944 resultados para PROGRAMMING LANGUAGE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

描述了一个Java自动化的单元测试工具JUTA.JUTA首先调用工具Soot解析单个Java方法的源码,并将源码解析成一个控制流图.在此基础上,采用符号执行的方法分析控制流图上的路径.工具能够自动地产生满足覆盖率标准的程序的测试用例.这种方法产生的所有测试用例都是可执行的,并且一般来说具有较小的测试用例数.如果用户能够合理地给出描述程序错误的断言,框架JUTA能够自动地检查源码中部分特定类型的错误.实验结果表明工具对Java单元代码的动态测试和静态测试均能在可接受的时间内给出有效的结果.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文介绍了三维物体识别及姿态测定的一种新技术,从物体空间域模型出发,通过约束推理及几何推理,在物体三维信息部分给定的条件下,推断预测图象模型,并通过实测的图象数据反馈,推断出隐含在图象中未给定的三维信息,最终实现三维物体识别及姿态测定。整个系统在VICOM机上用C语言完成。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

本文从信息控制的角度出发将机器人语言定义为能处理某些特定的“外部设备”的计算机程序设计语言。并将机器人语言成份分为两大部分,即机器人核心语言和机器人专用语言。然后分别综述了机器人专用语言和机器人核心语言的进展情况。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis mainly studies the technologies of 3-D seismic visualization and Graphic User Interface of seismic processing software. By studying Computer Graphics and 3-D geological modeling, the author designs and implements the visualization module of seismic data processing software using OpenGL and Motif. Setting seismic visualization flow as the subject, NURBS surface approximation and Delaunay Triangulation as the two different methods, the thesis discusses the key algorithms and technologies of seismic visualization and attempts to apply Octree Space Partitioning and Mip Mapping to enhance system performance. According to the research mentioned above, in view of portability and scalability, the author adopts Object-oriented Analysis and Object-oriented Design, uses standard C++ as programming language, OpenGL as 3-D graphics library and Motif as GUI developing tool to implement the seismic visualization framework on SGI Irix platform. This thesis also studies the solution of fluid equations in porous media. 2-D alternating direction implicit procedure has been turned into 3-D successive over relaxation iteration, which possesses such virtues as faster computing speed, faster convergence rate, better adaptability to heterogeneous media and less memory demanding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents SodaBot, a general-purpose software agent user-environment and construction system. Its primary component is the basic software agent --- a computational framework for building agents which is essentially an agent operating system. We also present a new language for programming the basic software agent whose primitives are designed around human-level descriptions of agent activity. Via this programming language, users can easily implement a wide-range of typical software agent applications, e.g. personal on-line assistants and meeting scheduling agents. The SodaBot system has been implemented and tested, and its description comprises the bulk of this thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many search problems are commonly solved with combinatoric algorithms that unnecessarily duplicate and serialize work at considerable computational expense. There are techniques available that can eliminate redundant computations and perform remaining operations concurrently, effectively reducing the branching factors of these algorithms. This thesis applies these techniques to the problem of parsing natural language. The result is an efficient programming language that can reduce some of the expense associated with principle-based parsing and other search problems. The language is used to implement various natural language parsers, and the improvements are compared to those that result from implementing more deterministic theories of language processing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MIT Scheme is an implementation of the Scheme programming language that runs on many popular workstations. The MIT Scheme Reference Manual describes the special forms, procedures, and datatypes provided by the implementation for use by application programmers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How can one represent the meaning of English sentences in a formal logical notation such that the translation of English into this logical form is simple and general? This report answers this question for a particular kind of meaning, namely quantifier scope, and for a particular part of the translation, namely the syntactic influence on the translation. Rules are presented which predict, for example, that the sentence: Everyone in this room speaks at least two languages. has the quantifier scope AE in standard predicate calculus, while the sentence: At lease two languages are spoken by everyone in this room. has the quantifier scope EA. Three different logical forms are presented, and their translation rules are examined. One of the logical forms is predicate calculus. The translation rules for it were developed by Robert May (May 19 77). The other two logical forms are Skolem form and a simple computer programming language. The translation rules for these two logical forms are new. All three sets of translation rules are shown to be general, in the sense that the same rules express the constraints that syntax imposes on certain other linguistic phenomena. For example, the rules that constrain the translation into Skolem form are shown to constrain definite np anaphora as well. A large body of carefully collected data is presented, and used to assess the empirical accuracy of each of the theories. None of the three theories is vastly superior to the others. However, the report concludes by suggesting that a combination of the two newer theories would have the greatest generality and the highest empirical accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Act2 is a highly concurrent programming language designed to exploit the processing power available from parallel computer architectures. The language supports advanced concepts in software engineering, providing high-level constructs suitable for implementing artificially-intelligent applications. Act2 is based on the Actor model of computation, consisting of virtual computational agents which communicate by message-passing. Act2 serves as a framework in which to integrate an actor language, a description and reasoning system, and a problem-solving and resource management system. This document describes issues in Act2's design and the implementation of an interpreter for the language.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"The Structure and Interpretation of Computer Programs" is the entry-level subject in Computer Science at the Massachusetts Institute of Technology. It is required of all students at MIT who major in Electrical Engineering or in Computer Science, as one fourth of the "common core curriculum," which also includes two subjects on circuits and linear systems and a subject on the design of digital systems. We have been involved in the development of this subject since 1978, and we have taught this material in its present form since the fall of 1980 to approximately 600 students each year. Most of these students have had little or no prior formal training in computation, although most have played with computers a bit and a few have had extensive programming or hardware design experience. Our design of this introductory Computer Science subject reflects two major concerns. First we want to establish the idea that a computer language is not just a way of getting a computer to perform operations, but rather that it is a novel formal medium for expressing ideas about methodology. Thus, programs must be written for people to read, and only incidentally for machines to execute. Secondly, we believe that the essential material to be addressed by a subject at this level, is not the syntax of particular programming language constructs, nor clever algorithms for computing particular functions of efficiently, not even the mathematical analysis of algorithms and the foundations of computing, but rather the techniques used to control the intellectual complexity of large software systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ISBN: 3-540-76198-5 (out of print)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Implementations are presented of two common algorithms for integer factorization, Pollard’s “p – 1” method and the SQUFOF method. The algorithms are implemented in the F# language, a functional programming language developed by Microsoft and officially released for the first time in 2010. The algorithms are thoroughly tested on a set of large integers (up to 64 bits in size), running both on a physical machine and a Windows Azure machine instance. Analysis of the relative performance between the two environments indicates comparable performance when taking into account the difference in computing power. Further analysis reveals that the relative performance of the Azure implementation tends to improve as the magnitudes of the integers increase, indicating that such an approach may be suitable for larger, more complex factorization tasks. Finally, several questions are presented for future research, including the performance of F# and related languages for more efficient, parallelizable algorithms, and the relative cost and performance of factorization algorithms in various environments, including physical hardware and commercial cloud computing offerings from the various vendors in the industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ML programming language restricts type polymorphism to occur only in the "let-in" construct and requires every occurrence of a formal parameter of a function (a lambda abstraction) to have the same type. Milner in 1978 refers to this restriction (which was adopted to help ML achieve automatic type inference) as a serious limitation. We show that this restriction can be relaxed enough to allow universal polymorphic abstraction without losing automatic type inference. This extension is equivalent to the rank-2 fragment of system F. We precisely characterize the additional program phrases (lambda terms) that can be typed with this extension and we describe typing anomalies both before and after the extension. We discuss how macros may be used to gain some of the power of rank-3 types without losing automatic type inference. We also discuss user-interface problems in how to inform the programmer of the possible types a program phrase may have.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predictability - the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements - is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is the Time-constrained Reactive Automaton (TRA) formalism, which adopts a fundamental notion of space and time that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Using the TRA model, unrealistic systems - possessing properties such as clairvoyance, caprice, in finite capacity, or perfect timing - cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems - not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed. The TRA model is presented to system developers through the CLEOPATRA programming language. CLEOPATRA features a C-like imperative syntax for the description of computation, which makes it easier to incorporate in applications already using C. It is event-driven, and thus appropriate for embedded process control applications. It is object-oriented and compositional, thus advocating modularity and reusability. CLEOPATRA is semantically sound; its objects can be transformed, mechanically and unambiguously, into formal TRA automata for verification purposes, which can be pursued using model-checking or theorem proving techniques. Since 1989, an ancestor of CLEOPATRA has been in use as a specification and simulation language for embedded time-critical robotic processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Predictability -- the ability to foretell that an implementation will not violate a set of specified reliability and timeliness requirements -- is a crucial, highly desirable property of responsive embedded systems. This paper overviews a development methodology for responsive systems, which enhances predictability by eliminating potential hazards resulting from physically-unsound specifications. The backbone of our methodology is the Time-constrained Reactive Automaton (TRA) formalism, which adopts a fundamental notion of space and time that restricts expressiveness in a way that allows the specification of only reactive, spontaneous, and causal computation. Using the TRA model, unrealistic systems – possessing properties such as clairvoyance, caprice, infinite capacity, or perfect timing -- cannot even be specified. We argue that this "ounce of prevention" at the specification level is likely to spare a lot of time and energy in the development cycle of responsive systems -- not to mention the elimination of potential hazards that would have gone, otherwise, unnoticed. The TRA model is presented to system developers through the Cleopatra programming language. Cleopatra features a C-like imperative syntax for the description of computation, which makes it easier to incorporate in applications already using C. It is event-driven, and thus appropriate for embedded process control applications. It is object-oriented and compositional, thus advocating modularity and reusability. Cleopatra is semantically sound; its objects can be transformed, mechanically and unambiguously, into formal TRA automata for verification purposes, which can be pursued using model-checking or theorem proving techniques. Since 1989, an ancestor of Cleopatra has been in use as a specification and simulation language for embedded time-critical robotic processes.