989 resultados para PRODUCTION TRAITS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of cooperation is thought to be promoted by pleiotropy, whereby cooperative traits are coregulated with traits that are important for personal fitness. However, this hypothesis faces a key challenge: what happens if mutation targets a cooperative trait specifically rather than the pleiotropic regulator? Here, we explore this question with the bacterium Pseudomonas aeruginosa, which cooperatively digests complex proteins using elastase. We empirically measure and theoretically model the fate of two mutants-one missing the whole regulatory circuit behind elastase production and the other with only the elastase gene mutated-relative to the wild-type (WT). We first show that, when elastase is needed, neither of the mutants can grow if the WT is absent. And, consistent with previous findings, we show that regulatory gene mutants can grow faster than the WT when there are no pleiotropic costs. However, we find that mutants only lacking elastase production do not outcompete the WT, because the individual cooperative trait has a low cost. We argue that the intrinsic architecture of molecular networks makes pleiotropy an effective way to stabilize cooperative evolution. Although individual cooperative traits experience loss-of-function mutations, these mutations may result in weak benefits, and need not undermine the protection from pleiotropy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid changes in biodiversity are occurring globally, as a consequence of anthropogenic disturbance. This has raised concerns, since biodiversity is known to significantly contribute to ecosystem functions and services. Marine benthic communities participate in numerous functions provided by soft-sedimentary ecosystems. Eutrophication-induced oxygen deficiency is a growing threat against infaunal communities, both in open sea areas and in coastal zones. There is thus a need to understand how such disturbance affects benthic communities, and what is lost in terms of ecosystem functioning if benthic communities are harmed. In this thesis, the status of benthic biodiversity was assessed for the open Baltic Sea, a system severely affected by broad-scale hypoxia. Long-term monitoring data made it possible to establish quantitative biodiversity baselines against which change could be compared. The findings show that benthic biodiversity is currently severely impaired in large areas of the open Baltic Sea, from the Bornholm Basin to the Gulf of Finland. The observed reduction in biodiversity indicates that benthic communities are structurally and functionally impoverished in several of the sub-basins due to the hypoxic stress. A more detailed examination of disturbance impacts (through field studies and -experiments) on benthic communities in coastal areas showed that changes in benthic community structure and function took place well before species were lost from the system. The degradation of benthic community structure and function was directed by the type of disturbance, and its specific temporal and spatial characteristics. The observed shifts in benthic trait composition were primarily the result of reductions in species’ abundances, or of changes in demographic characteristics, such as the loss of large, adult bivalves. Reduction in community functions was expressed as declines in the benthic bioturbation potential and in secondary biomass production. The benthic communities and their degradation accounted for a substantial proportion of the changes observed in ecosystem multifunctionality. Individual ecosystem functions (i.e. measures of sediment ecosystem metabolism, elemental cycling, biomass production, organic matter transformation and physical structuring) were observed to differ in their response to increasing hypoxic disturbance. Interestingly, the results suggested that an impairment of ecosystem functioning could be detected at an earlier stage if multiple functions were considered. Importantly, the findings indicate that even small-scale hypoxic disturbance can reduce the buffering capacity of sedimentary ecosystem, and increase the susceptibility of the system towards further stress. Although the results of the individual papers are context-dependent, their combined outcome implies that healthy benthic communities are important for sustaining overall ecosystem functioning as well as ecosystem resilience in the Baltic Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Psychotria ipecacuanha is a perennial, medicinal herb that grows in clusters in the understory of humid, shady areas of the Atlantic Rain Forest of southeastern Brazil. The present study characterized the variation in floral traits among 35 clusters from three natural populations of this plant species. Field observations showed that the clusters are isomorphic, that is, a given cluster will either set long-styled or short-styled flowers. Stigmas and anthers are reciprocally placed in each morph, a dimorphism characteristic of distyly. The populations are isoplethic, that is, a given population exhibits an equilibrium 1:1 ratio of floral morphs. Morphometric analyses revealed that anther length, stigma length, corolla diameter, and pollen grain diameter were consistently greater in short-styled flowers, regardless of the population investigated. Significant differences for floral traits in the short-styled morph were found among populations. Floral traits in the long-styled morph also showed some significant differences among populations, but not for stigma height and corolla length. Controlled pollinations carried out in natural populations showed that fruit production was higher after inter-morph pollination. Nevertheless, observations of pollen tube growth in style, and also fruit production after spontaneous self-pollination and intra-morph pollination, indicated partial intramorph compatibility in this plant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this thesis was to determine the potential impact of heat stress (HS) on physiological traits of lactating cows and semen quality of bulls kept in a temperate climate. The thesis is comprised of three studies. An innovative statistical modeling aspect common to all three studies was the application of random regression methodology (RRM) to study the phenotypic and genetic trajectory of traits in dependency of a continuous temperature humidity index (THI). In the first study, semen quality and quantity traits of 562 Holstein sires kept on an AI station in northwestern Germany were analyzed in the course of THI calculated from data obtained from the nearest weather station. Heat stress was identified based on a decline in semen quality and quantity parameters. The identified general HS threshold (THI = 60) and the thermoneutal zone (THI in the range from 50 to 60) for semen production were lower than detected in studies conducted in tropical and subtropical climates. Even though adult bulls were characterized by higher semen productivity compared to younger bulls, they responded with a stronger semen production loss during harsh environments. Heritabilities (low to moderate range) and additive genetic variances of semen characteristics varied with different levels of THI. Also, based on genetic correlations genotype, by environment interactions were detected. Taken together, these findings suggest the application of specific selection strategies for specific climate conditions. In the second study, the effect of the continuous environmental descriptor THI as measured inside the barns on rectal temperatures (RT), skin temperatures (ST), vaginal temperatures (VT), respiration rates (RR), and pulse rate (PR) of lactating Holstein Friesian (HF) and dual-purpose German black pied cattle (DSN) was analyzed. Increasing HS from THI 65 (threshold) to THI 86 (maximal THI) resulted in an increase of RT by 0.6 °C (DSN) and 1 °C (HF), ST by 3.5 °C (HF) and 8 °C (DSN), VT by 0.3 °C (DSN), and RR by 47 breaths / minute (DSN), and decreased PR by 7 beats / minute (DSN). The undesired effects of rising THI on physiological traits were most pronounced for cows with high levels of milk yield and milk constituents, cows in early days in milk and later parities, and during summer seasons in the year 2014. In the third study of this dissertation, the genetic components of the cow’s physiological responses to HS were investigated. Heat stress was deduced from indoor THI measurements, and physiological traits were recorded on native DSN cows and their genetically upgraded crosses with Holstein Friesian sires in two experimental herds from pasture-based production systems reflecting a harsh environment of the northern part of Germany. Although heritabilities were in a low range (from 0.018 to 0.072), alterations of heritabilities, repeatabilities, and genetic components in the course of THI justify the implementation of genetic evaluations including heat stress components. However, low repeatabilities indicate the necessity of using repeated records for measuring physiological traits in German cattle. Moderate EBV correlations between different trait combinations indicate the potential of selection for one trait to simultaneously improve the other physiological attributes. In conclusion, bulls of AI centers and lactating cows suffer from HS during more extreme weather conditions also in the temperate climate of Northern Germany. Monitoring physiological traits during warm and humid conditions could provide precious information for detection of appropriate times for implementation of cooling systems and changes in feeding and management strategies. Subsequently, the inclusion of these physiological traits with THI specific breeding values into overall breeding goals could contribute to improving cattle adaptability by selecting the optimal animal for extreme hot and humid conditions. Furthermore, the recording of meteorological data in close distance to the cow and visualizing the surface body temperature by infrared thermography techniques might be helpful for recognizing heat tolerance and adaptability in cattle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Managing ecosystems to ensure the provision of multiple ecosystem services is a key challenge for applied ecology. Functional traits are receiving increasing attention as the main ecological attributes by which different organisms and biological communities influence ecosystem services through their effects on underlying ecosystem processes. Here we synthesize concepts and empirical evidence on linkages between functional traits and ecosystem services across different trophic levels. Most of the 247 studies reviewed considered plants and soil invertebrates, but quantitative trait–service associations have been documented for a range of organisms and ecosystems, illustrating the wide applicability of the trait approach. Within each trophic level, specific processes are affected by a combination of traits while particular key traits are simultaneously involved in the control of multiple processes. These multiple associations between traits and ecosystem processes can help to identify predictable trait–service clusters that depend on several trophic levels, such as clusters of traits of plants and soil organisms that underlie nutrient cycling, herbivory, and fodder and fibre production. We propose that the assessment of trait–service clusters will represent a crucial step in ecosystem service monitoring and in balancing the delivery of multiple, and sometimes conflicting, services in ecosystem management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calliandra calothyrsus is a tree legume native to Mexico and Central America. The species has attracted considerable attention for its capacity to produce both fuelwood and foliage for either green manure or fodder. Its high content of proanthocyanidins (condensed tannins) and associated low digestibility has, however, limited its use as a feed for ruminants, and there is also a widespread perception that wilting the leaves further reduces their nutritive value. Nevertheless, there has been increasing uptake of calliandra as fodder in certain regions, notably the Central Highlands of Kenya. The present study, conducted in Embu, Kenya, investigated effects of provenance, wilting, cutting frequency and seasonal variation both in the laboratory (in vitro digestibility, crude protein, neutral detergent fibre, extractable and bound proanthocyanidins) and in on-station animal production trials with growing lambs and lactating goats. The local Kenyan landrace of calliandra (Embu) and a closely-related Guatemalan provenance (Patulul) were found to be significantly different, and superior, to a provenance from Nicaragua (San Ramon) in most of the laboratory traits measured, as well as in animal production and feed efficiency. Cutting frequency had no important effect on quality; and although all quality traits displayed seasonal variation there was little discernible pattern to this variation. Wilting had a much less negative effect than expected, and for lambs fed calliandra as a supplement to a low quality basal feed (maize stover), wilting was actually found to give higher live-weight gain and feed efficiency. Conversely, with a high quality basal diet (Napier grass) wilting enhanced intake but not live-weight gain, so feed efficiency was greater for fresh material. The difference between fresh and wilted leaves was not great enough to justify the current widespread recommendation that calliandra should always be fed fresh.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying factors which allow the evolution and persistence of cooperative interactions between species is a fundamental issue in evolutionary ecology. Various hypotheses have been suggested which generally focus on mechanisms that allow cooperative genotypes in different species to maintain interactions over space and time. Here, we emphasise the fact that even within mutualisms (interactions with net positive fitness effects for both partners), there may still be inherent costs, such as the occasional predation by ants upon aphids. Individuals engaged in mutualisms benefit from minimising these costs as long as it is not at the expense of breaking the interspecific interaction, which offers a net positive benefit. The most common and obvious defence traits to minimise interspecific interaction costs are resistance traits, which act to reduce encounter rate between two organisms. Tolerance traits, in contrast, minimise fitness costs to the actor, but without reducing encounter rate. Given that, by definition, it is beneficial to remain in mutualistic interactions, the only viable traits to minimise costs are tolerance-based 'defence' strategies. Thus, we propose that tolerance traits are an important factor promoting stability in mutualisms. Furthermore, because resistance traits tend to propagate coevolutionary arms races between antagonists, whilst tolerance traits do not, we also suggest that tolerance-based defence strategies may be important in facilitating the transition from antagonistic interactions into mutualisms. For example, the mutualism between ants and aphids has been suggested to have evolved from parasitism. We describe how phenotypic plasticity in honeydew production may be a tolerance trait that has prevented escalation into an antagonistic arms race and instead led to mutualistic coevolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable intensification is seen as the main route for meeting the world’s increasing demands for food and fibre. As demands mount for greater efficiency in the use of resources to achieve this goal, so the focus on roots and rootstocks and their role in acquiring water and nutrients, and overcoming pests and pathogens, is increasing. The purpose of this review is to explore some of the ways in which understanding root systems and their interactions with soils could contribute to the development of more sustainable systems of intensive production. Physical interactions with soil particles limit root growth if soils are dense, but root–soil contact is essential for optimal growth and uptake of water and nutrients. X-ray microtomography demonstrated that maize roots elongated more rapidly with increasing root–soil contact, as long as mechanical impedance was not limiting root elongation, while lupin was less sensitive to changes in root–soil contact. In addition to selecting for root architecture and rhizosphere properties, the growth of many plants in cultivated systems is profoundly affected by selection of an appropriate rootstock. Several mechanisms for scion control by rootstocks have been suggested, but the causal signals are still uncertain and may differ between crop species. Linkage map locations for quantitative trait loci for disease resistance and other traits of interest in rootstock breeding are becoming available. Designing root systems and rootstocks for specific environments is becoming a feasible target.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An updated empirical approach is proposed for specifying coexistence requirements for genetically modified (GM) maize (Zea mays L.) production to ensure compliance with the 0.9% labeling threshold for food and feed in the European Union. The model improves on a previously published (Gustafson et al., 2006) empirical model by adding recent data sources to supplement the original database and including the following additional cases: (i) more than one GM maize source field adjacent to the conventional or organic field, (ii) the possibility of so-called “stacked” varieties with more than one GM trait, and (iii) lower pollen shed in the non-GM receptor field. These additional factors lead to the possibility for somewhat wider combinations of isolation distance and border rows than required in the original version of the empirical model. For instance, in the very conservative case of a 1-ha square non-GM maize field surrounded on all four sides by homozygous GM maize with 12 m isolation (the effective isolation distance for a single GM field), non-GM border rows of 12 m are required to be 95% confident of gene flow less than 0.9% in the non-GM field (with adventitious presence of 0.3%). Stacked traits of higher GM mass fraction and receptor fields of lower pollen shed would require a greater number of border rows to comply with the 0.9% threshold, and an updated extension to the model is provided to quantify these effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sainfoin is a non-bloating temperate forage legume with a moderate-to-high condensed tannin (CT) content. This study investigated whether the diversity of sainfoin accessions in terms of CT structures and contents could be related to rumen in vitro gas and methane (CH4) production and fermentation characteristics. The aim was to identify promising accessions for future investigations. Accessions differed (P < 0·0001) in terms of total gas and CH4 productions. Fermentation kinetics (i.e. parameters describing the shape of the gas production curve and half-time gas production) for CH4 production were influenced by accession (P ≤ 0·038), but not by PEG. Accession, PEG and time affected (P < 0·001) CH4 production, but accession and PEG interaction showed only a tendency (P = 0·08). Increase in CH4 due to PEG addition was not related to CT content. Further analysis of the relationships among multiple traits (nutritional composition, CT structure and CH4 production) using principal component analysis (PCA) based on optimally weighted variables revealed differences among accessions. The first two principal component axes, PC1 (57·6%) and PC2 (18·4%), explained 76·0% of the total variation among accessions. Loading of biplots derived from both PCAs made it possible to establish a relationship between the ratio of prodelphinidin:procyanidin (PD:PC) tannins and CH4 production in some accessions. The PD:PC ratio seems to be an important source of variation that is negatively related to CH4 production. These results suggested that sainfoin accessions collected from across the world exhibited substantial variation in terms of their effects on rumen in vitro CH4 production, revealing some promising accessions for future investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key message We have identified QTLs for stomatal characteristics on chromosome II of faba bean by applying SNPs derived from M. truncatula , and have identified candidate genes within these QTLs using synteny between the two species. Abstract Faba bean (Vicia faba L.) is a valuable food and feed crop worldwide, but drought often limits its production, and its genome is large and poorly mapped. No information is available on the effects of genomic regions and genes on drought adaptation characters such as stomatal characteristics in this species, but the synteny between the sequenced model legume, Medicago truncatula, and faba bean can be used to identify candidate genes. A mapping population of 211 F5 recombinant inbred lines (Mélodie/2 × ILB 938/2) were phenotyped to identify quantitative trait loci (QTL) affecting stomatal morphology and function, along with seed weight, under well-watered conditions in a climate-controlled glasshouse in 2013 and 2014. Canopy temperature (CT) was evaluated in 2013 under water-deficit (CTd). In total, 188 polymorphic single nucleotide polymorphisms (SNPs), developed from M. truncatula genome data, were assigned to nine linkage groups that covered ~928 cM of the faba bean genome with an average inter-marker distance of 5.8 cM. 15 putative QTLs were detected, of which eight (affecting stomatal density, length and conductance and CT) co-located on chromosome II, in the vicinity of a possible candidate gene—a receptor-like protein kinase found in the syntenic interval of M. truncatula chromosome IV. A ribose-phosphate pyrophosphokinase from M. truncatula chromosome V, postulated as a possible candidate gene for the QTL for CTd, was found some distance away in the same chromosome. These results demonstrate that genomic information from M. truncatula can successfully be translated to the faba bean genome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mammals, the mass-specific rate of biomass production during gestation and lactation, here called maternal productivity, has been shown to vary with body size and lifestyle. Metabolic theory predicts that post-weaning growth of offspring, here termed juvenile productivity, should be higher than maternal productivity, and juveniles of smaller species should be more productive than those of larger species. Furthermore because juveniles generally have similar lifestyles to their mothers, across species juvenile and maternal productivities should be correlated. We evaluated these predictions with data from 270 species of placental mammals in 14 taxonomic/lifestyle groups. All three predictions were supported. Lagomorphs, perissodactyls and artiodactyls were very productive both as juveniles and as mothers as expected from the abundance and reliability of their foods. Primates and bats were unproductive as juveniles and as mothers, as expected as an indirect consequence of their low predation risk and consequent low mortality. Our results point the way to a mechanistic explanation for the suite of correlated life-history traits that has been called the slow–fast continuum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Aims: Phosphate (Pi) is one of the most limiting nutrients for agricultural production in Brazilian soils due to low soil Pi concentrations and rapid fixation of fertilizer Pi by adsorption to oxidic minerals and/or precipitation by iron and aluminum ions. The objectives of this study were to quantify phosphorus (P) uptake and use efficiency in cultivars of the species Coffea arabica L. and Coffea canephora L., and group them in terms of efficiency and response to Pi availability. Methods: Plants of 21 cultivars of C. arabica and four cultivars of C. canephora were grown under contrasting soil Pi availabilities. Biomass accumulation, tissue P concentration and accumulation and efficiency indices for P use were measured. Key Results: Coffee plant growth was significantly reduced under low Pi availability, and P concentration was higher in cultivars of C. canephora. The young leaves accumulated more P than any other tissue. The cultivars of C. canephora had a higher root/shoot ratio and were significantly more efficient in P uptake, while the cultivars of C. arabica were more efficient in P utilization. Agronomic P use efficiency varied among coffee cultivars and E16 Shoa, E22 Sidamo, Iêmen and Acaiá cultivars were classified as the most efficient and responsive to Pi supply. A positive correlation between P uptake efficiency and root to shoot ratio was observed across all cultivars at low Pi supply. These data identify Coffea genotypes better adapted to low soil Pi availabilities, and the traits that contribute to improved P uptake and use efficiency. These data could be used to select current genotypes with improved P uptake or utilization efficiencies for use on soils with low Pi availability and also provide potential breeding material and targets for breeding new cultivars better adapted to the low Pi status of Brazilian soils. This could ultimately reduce the use of Pi fertilizers in tropical soils, and contribute to more sustainable coffee production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influences of inbreeding on daily milk yield (DMY), age at first calving (AFC), and calving intervals (CI) were determined on a highly inbred zebu dairy subpopulation of the Guzerat breed. Variance components were estimated using animal models in single-trait analyses. Two approaches were employed to estimate inbreeding depression: using individual increase in inbreeding coefficients or using inbreeding coefficients as possible covariates included in the statistical models. The pedigree file included 9,915 animals, of which 9,055 were inbred, with an average inbreeding coefficient of 15.2%. The maximum inbreeding coefficient observed was 49.45%, and the average inbreeding for the females still in the herd during the analysis was 26.42%. Heritability estimates were 0.27 for DMY and 0.38 for AFC. The genetic variance ratio estimated with the random regression model for CI ranged around 0.10. Increased inbreeding caused poorer performance in DMY, AFC, and CI. However, some of the cows with the highest milk yield were among the highly inbred animals in this subpopulation. Individual increase in inbreeding used as a covariate in the statistical models accounted for inbreeding depression while avoiding overestimation that may result when fitting inbreeding coefficients.