921 resultados para POWER-POINT TRACKING


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the control and charge management strategy of a photovoltaic system (PV) with plug-in hybrid electric vehicle (PHEV) as energy storage. The hybrid energy storage system (HESS) of PHEV consists of battery and supercapacitor. A simulation model for the PV system with PHEV energy storage has been developed using Matlab/SimpowerSystems. The system consists of PV arrays, SEPIC dc-dc converter with maximum power point tracking (MPPT), hybrid battery-supercapacitor energy storage with bidirectional dc-dc converter and inverter for grid connection. A charge management algorithm for the hybrid energy storage system is proposed to control the power flows among the PV system, energy storage and the grid. Results show that the proposed power management algorithm can control the power flows in an efficient manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel numerical model of a Bent Backwards Duct Buoy (BBDB) Oscillating Water Column (OWC) Wave Energy Converter was created based on existing isolated numerical models of the different energy conversion systems utilised by an OWC. The novel aspect of this numerical model is that it incorporates the interdependencies of the different power conversion systems rather than modelling each system individually. This was achieved by accounting for the dynamic aerodynamic damping caused by the changing turbine rotational velocity by recalculating the turbine damping for each simulation sample and applying it via a feedback loop. The accuracy of the model was validated using experimental data collected during the Components for Ocean Renewable Energy Systems (CORES) EU FP-7 project that was tested in Galway Bay, Ireland. During the verification process, it was discovered that the model could also be applied as a valuable tool when troubleshooting device performance. A new turbine was developed and added to a full scale model after being investigated using Computational Fluid Dynamics. The energy storage capacity of the impulse turbine was investigated by modelling the turbine with both high and low inertia and applying three turbine control theories to the turbine using the full scale model. A single Maximum Power Point Tracking algorithm was applied to the low-inertia turbine, while both a fixed and dynamic control algorithm was applied to the high-inertia turbine. These results suggest that the highinertia turbine could be used as a flywheel energy storage device that could help minimize output power variation despite the low operating speed of the impulse turbine. This research identified the importance of applying dynamic turbine damping to a BBDB OWC numerical model, revealed additional value of the model as a device troubleshooting tool, and found that an impulse turbine could be applied as an energy storage system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the considerable recent attention to distributed power generation and interest in sustainable energy, the integration of photovoltaic (PV) systems to grid-connected or isolated microgrids has become widespread. In order to maximize power output of PV system extensive research into control strategies for maximum power point tracking (MPPT) methods has been conducted. According to the robust, reliable, and fast performance of artificial intelligence-based MPPT methods, these approaches have been applied recently to various systems under different conditions. Given the diversity of recent advances to MPPT approaches a review focusing on the performance and reliability of these methods under diverse conditions is required. This paper reviews AI-based techniques proven to be effective and feasible to implement and very common in literature for MPPT, including their limitations and advantages. In order to support researchers in application of the reviewed techniques this study is not limited to reviewing the performance of recently adopted methods, rather discusses the background theory, application to MPPT systems, and important references relating to each method. It is envisioned that this review can be a valuable resource for researchers and engineers working with PV-based power systems to be able to access the basic theory behind each method, select the appropriate method according to project requirements, and implement MPPT systems to fulfill project objectives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The next-generation smart grid will rely highly on telecommunications infrastructure for data transfer between various systems. Anywhere we have data transfer in a system is a potential security threat. When we consider the possibility of smart grid data being at the heart of our critical systems infrastructure it is imperative that we do all we can to ensure the confidentiality, availability and integrity of the data. A discussion on security itself is outside the scope of this paper, but if we assume the network to be as secure as possible we must consider what we can do to detect when that security fails, or when the attacks comes from the inside of the network. One way to do this is to setup a hacker-trap, or honeypot. A honeypot is a device or service on a network which appears legitimate, but is in-fact a trap setup to catch breech attempts. This paper identifies the different types of honeypot and describes where each may be used. The authors have setup a test honeypot system which has been live for some time. The test system has been setup to emulate a device on a utility network. The system has had many hits, which are described in detail by the authors. Finally, the authors discuss how larger-scale systems in utilities may benefit from honeypot placement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a nonlinear backstepping controller is designed for three-phase grid-connected solar photovoltaic (PV) systems to share active and reactive power. A cascaded control structure is considered for the purpose of sharing appropriate amount of power. In this cascaded control structure, the dc-link voltage controller is designed for balancing the power flow within the system and the current controller is designed to shape the grid current into a pure sinusoidal waveform. In order to balance the power flow, it is always essential to maintain a constant voltage across the dc-link capacitor for which an incremental conductance (IC) method is used in this paper. This approach also ensures the operation of solar PV arrays at the maximum power point (MPP) under rapidly changing atmospheric conditions. The proposed current controller is designed to guarantee the current injection into the grid in such a way that the system operates at a power factor other than unity which is essential for sharing active and reactive power. The performance of the proposed backstepping approach is verified on a three-phase grid-connected PV system under different atmospheric conditions. Simulation results show the effectiveness of the proposed control scheme in terms of achieving desired control objectives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is the first outdoor test of small-scale dye sensitized solar cells (DSC) powering a standalone nanosensor node. A solar cell test station (SCTS) has been developed using standard DSC to power a gas nanosensor, a radio transmitter, and the control electronics (CE) for battery charging. The station is remotely monitored through wired (Ethernet cable) or wireless connection (radio transmitter) in order to evaluate in real time the performance of the solar cells powering a nanosensor and a transmitter under different weather conditions. We analyze trends of energy conversion efficiency after 60 days of operation. The 408 cm2 active surface module produces enough energy to power a gas nanosensor and a radio transmitter during the day and part of the night. Also, by using a variable programmable load we keep the system working on the maximum power point (MPP) quantifying the total energy generated and stored in a battery. Although this technology is at an early stage of development, these experiments provide useful data for future outdoor applications such as nanosensor network nodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is the first outdoor test of small-scale dye sensitized solar cells (DSC) powering a stand-alone nanosensor node. A solar cell test station (SCTS) has been developed using standard DSC to power a gas nanosensor, a radio transmitter, and the control electronics (CE) for battery charging. The station is remotely monitored through wired (Ethernet cable) or wireless connection (radio transmitter) in order to evaluate in real time the performance of the solar cells and devices under different weather conditions. The 408 cm2 active surface module produces enough energy to power a gas nanosensor and a radio transmitter during the day and part of the night. Also, by using a programmable load we keep the system working on the maximum power point (MPP) quantifying the total energy generated and stored in a battery. These experiments provide useful data for future outdoor applications such as nanosensor networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An accurate PV module electrical model is presented based on the Shockley diode equation. The simple model has a photo-current current source, a single diode junction and a series resistance, and includes temperature dependences. The method of parameter extraction and model evaluation in Matlab is demonstrated for a typical 60W solar panel. This model is used to investigate the variation of maximum power point with temperature and isolation levels. A comparison of buck versus boost maximum power point tracker (MPPT) topologies is made, and compared with a direct connection to a constant voltage (battery) load. The boost converter is shown to have a slight advantage over the buck, since it can always track the maximum power point.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An accurate PV module electrical model is presented based on the Shockley diode equation. The simple model has a photo-current current source, a single diode junction and a series resistance, and includes temperature dependences. The method of parameter extraction and model evaluation in Matlab is demonstrated for a typical 60W solar panel. This model is used to investigate the variation of maximumpower point with temperature and insolation levels. A comparison of buck versus boostmaximum power point tracker (MPPT) topologies is made, and compared with a direct connection to a constant voltage (battery) load. The boost converter is shown to have a slight advantage over the buck, since it can always track the maximum power point.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Foetal Alcohol Syndrome has long gone unrecognised and undiagnosed in Australia. In the last few years of the 21st Century (2010-14) health practitioners are finally seeking ways of diagnosing the effects of alcohol in pregnancy on the next generation. The author offers a power point presentation which gives guidance on making an accurate diagnosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper explores the possibility of connecting two Wind Turbine Generators (WTG) to the grid using a single three level inverter. In the proposed system the rectified output of one WTG is connected across the upper dc-link capacitor of a standard diode clamped three level inverter. Similarly the rectified output of the other WTG is connected across the lower capacitor. This particular combination has several advantages such as, direct connection to the grid, reduced parts count, improved reliability and high power capacity. However, the major problem in the proposed system is the imminent imbalance of dc-link voltages. Under such conditions conventional modulation methods fail to produce desired voltage and current waveforms. A detailed analysis on this issue and a novel space vector modulation method, as the solution, are proposed in this paper. To track the Maximum power point of each WTG a power sharing algorithm is proposed. Simulation results are presented to attest the efficacy of the proposed system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Injection velocity has been recognized as a key variable in thermoplastic injection molding. Its closed-loop control is, however, difficult due to the complexity of the process dynamic characteristics. The basic requirements of the control system include tracking of a pre-determined injection velocity curve defined in a profile, load rejection and robustness. It is difficult for a conventional control scheme to meet all these requirements. Injection velocity dynamics are first analyzed in this paper. Then a novel double-controller scheme is adopted for the injection velocity control. This scheme allows an independent design of set-point tracking and load rejection and has good system robustness. The implementation of the double-controller scheme for injection velocity control is discussed. Special techniques such as profile transformation and shifting are also introduced to improve the velocity responses. The proposed velocity control has been experimentally demonstrated to be effective for a wide range of processing conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cochrane Journal Club resource for the Cochrane Systematic Review: Community wide interventions for increasing physical activity. The resource includes a power-point presentation describing the essential components of the paper, summary, Discussion points: a critical appraisal and an author profile.