254 resultados para PORPHYROMONAS-GINGIVALIS
Resumo:
Hydrogen Sulfide (H(2)S) a volatile Sulfur compound, is implicated as a cause of inflammation. especially when it is produced by bacteria colonizing gastrointestinal organs However, It IS Unclear if H(2)S produced by periodontal pathogens affects the inflammatory responses mediated by oral/gingival epithelial cells Therefore. the aims of this Study were (1) to compare the in vitro production of H(2)S among. 14 strains of Oral bacteria and (2) to evaluate the effects of H(2)S on inflammatory response induced in host oral/gingival epithelial cells Porphyromonas gingivalis (Pg) produced the most H(2)S in Culture, Which, in turn resulted in the promotion of proinflammatory cytokine IL-8 from both gingival and Oral epithelial cells The up-regulation of IL-8 expression was reproduced by the exogenously applied H(2)S Furthermore. the Mutant Strains of Pg that do not produce major Soluble Virulent factors. ie gingival, still showed the Production of H(2)S. as well as the promotion of epithelial IL-8 production. which was abrogated by H(2)S scavenging reagents These results demonstrated that Pg produces a concentration of H(2)S capable of Up-regulating-IL-8 expression induced in gingival and oral epithelial cells, revealing a possible mechanism that may promote the inflammation in periodontal disease (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Proteinase-activated receptor-2 (PAR2) belongs to a novel subfamily of G-protein-coupled receptors with seven-transmembrane domains. This receptor is widely distributed throughout the body and seems to be importantly involved in inflammatory processes. PAR2 can be activated by serine proteases such as trypsin, mast cell tryptase, and bacterial proteases, such as gingipain produced by Porphyromonas gingivalis. This review describes the current stage of knowledge of the possible mechanisms that link PAR2 activation with periodontal disease, and proposes future therapeutic strategies to modulate the host response in the treatment of periodontitis.
Resumo:
Background: Halitosis has been correlated with the concentration of volatile sulfur compounds (VSC) produced in the oral cavity by metabolic activity of bacteria colonizing the periodontal area and the dorsum of the tongue. The aim of this study was to determine whether there is some relationship between the presence of N-benzoyl-DL-arginine-2-napthylamide (BANA)positive species Treponema denticola, Porphyromonas gingivalis, and Bacteroides forsythus and clinical and oral malodor parameters.Methods: Twenty-one subjects (21 to 59 years old) with probing depths (PD) >3.0 mm and 20 subjects (21 to 63 years old) with PD less than or equal to3.0 mm (controls) participated. The quality of the mouth air was assessed organoleptically, and a portable sulfide monitor was used to measure the concentration of VSC. Clinical parameters, plaque index (PI) and gingival index (GI), were obtained from 6 teeth. Samples for BANA test were taken from the dorsal surface of the tongue, saliva, and the 6 reference teeth.Results: the scores of PI, GI, subgingival samples that tested positive for BANA hydrolyzing species, organoleptic ratings, and VSC values were significantly higher in the subjects with PD >3.0 mm (P <0.01, Mann-Whitney U test). There was a correlation between BANA hydrolysis by subgingival plaque bacteria and VSC values (r = 0.55, P <0.01), and between GI and VSC values (r = 0.48, P <0.05) in patients with PD >3.0 mm. There was no significant correlation between these parameters in the control group.Conclusion: These results confirm that the BANA hydrolyzing bacteria in the subgingival plaque are an important source of malodor production in the oral cavity.
Resumo:
Background: Smoking is a well-known risk factor for destructive periodontal disease, but its relationship with periodontal status and subgingival microbiota remains unclear. Inherent limitations of microbiological methods previously used may partly explain these mixed results, and real-time polymerase chain reaction (PCR) has been presented as a valid alternative. The aim of the present study was to investigate the clinical condition and microbiological profile of patients with chronic periodontitis as related to the habit of smoking.Methods: Fifty patients (33 to 59 years old), 25 smokers and 25 never-smokers, constituted the sample. The visible plaque index (VPI), gingival bleeding index (GBI), bleeding on probing (BOP), periodontal probing depth (PD), clinical attachment loss (CAL), and gingival crevicular fluid (GCF) volume were recorded. Real-time PCR quantified Porphyromonas gingivalis, Micromonas micros, Dialister pneumosintes, Actinobacillus actinomycetemcomitans and total bacteria in subgingival samples.Results: Smokers and never-smokers showed similar values for VPI, GBI, and BOP. Smokers had deeper PD in buccal/lingual sites and higher CAL independently of the tooth surface. The GCF volume was smaller in smokers, independent of the PD. Similar amounts of total bacteria and P. gingivalis were observed for both groups. Significantly higher numbers of D. pneumosintes and M. micros were present in smokers and associated with moderate and deep pockets. When heavy smokers were considered, higher counts of total bacteria, M. micros, and D. pneumosintes were observed.Conclusions: Smoking seems to have a detrimental impact on the periodontal status and microbiological profile of patients with periodontitis. Compared to never-smokers, smokers had deeper pockets, greater periodontal destruction, and higher counts of some putative periodontal pathogens.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aiming to assess the presence of selected anaerobic microorganisms in root canals of human teeth with chronic apical periodontitis, 25 central and lateral upper incisors presenting with radiographic evidence of chronic apical periodontitis were studied. The pulp chamber was opened under aseptic conditions and samples of the root canal content were collected with sterile absorbent paper points, which were placed and dispersed in test tubes containing reduced transport medium (RTF). Aliquots were dried on glass slides and stained by indirect immunofluorcscencc for detection of Actinomyces viscosus, Fusobacterium nucleatum, Porphyromonas gingivalis and Prevotella intermedia. The results showed a positive indirect immunofluorescence reaction in 24 of the 25 samples. Fourteen were positive for the specie Actinomyces viscosus, 12 for Prevotella intermedia, 10 for Fusobacterium nucleatum and 4 for Porphyromonas gingivalis. A semiquantitative assay was easily implemented for assessment of degree of infection by the organisms in individual cases. © Munksgaard, 1996.
Resumo:
The purpose of the present investigation was to determine whether subjects institutionalized with mental retardation have a relationship between periodontal clinical parameters and the presence of the BANA-positive periodontal pathogens Porphyromonas gingivalis, Treponema denticola, and Bacteroides forsythus in their subgingival plaques. Fifty institutionalized subjects (25 patients with Down syndrome and 25 subjects with mental retardation) were matched with respect to age and sex. Periodontal clinical parameters (Bleeding on Probing, BOP; Papillary Bleeding Score, PBS; and Probing Depth, PD) were obtained from 6 reference teeth (3, 8, 14, 19, 24, 30). In addition, subgingival plaque samples taken from the same 6 teeth were analyzed for the presence of the BANA-positive species, by means of the chairside BANA test. In both the patients with Down syndrome and the group with mental retardation, the presence of BANA-positive plaques was significantly associated with bleeding on probing (p < 0.05) and increased probing depth (p < 0.01, Chisquare). Analysis of these data indicated that the BANA test could be used in combination with clinical criteria to diagnose a periodontopathy anaerobic Infection in institutionalized subjects.
Resumo:
This pilot study evaluated, by culture testing, the effectiveness of lethal photosensitization for the microbiological treatment of peri-implantitis in dogs. Experimental peri-implantitis was induced by ligature placement for 2 months. Following ligature removal, plaque control was instituted by scrubbing with 0.12% chlorhexidine daily for 12 months. Subsequently, mucoperiosteal flaps were elevated for scaling the implant surface. Microbial samples were obtained with paper points before and after treatment of implant surfaces by means of 100 microg/ml toluidine blue O (TBO,) and were exposed, for 80 s, to light with a wavelength of 685 nm from a 50 mW GaAlAs diode laser. The mean initial and final bacterial counts were 7.22 +/- 0.20 and 6.84 +/- 0.44 CFU/ml, respectively for TVC (P < 0.0001); 6.19 +/- 0.45 and 3.14 +/- 3.29 CFU/ml for P. intermedia/nigrescens (P = 0.001); 5.98 +/- 0.38 and 1.69 +/- 2.90 CFU/ml for Fusobacterium spp. (P = 0.001); and 6.07 +/- 0.22 to 1.69 +/- 2.94 CFU/ml for beta-hemolytic Streptococcus (P = 0.0039). It may be concluded that lethal photosensitization resulted in a reduction of the bacterial count. Complete elimination of bacteria was achieved in some samples.
Resumo:
Purpose: The goal of this study was to evaluate microbiota and radiographic peri-implant bone loss associated with ligature-induced peri-implantitis. Materials and Methods: Thirty-six dental implants with 4 different surfaces (9 commercially pure titanium, 9 titanium plasma-sprayed, 9 hydroxyapatite, and 9 acid-etched) were placed in the edentulous mandibles of 6 dogs. After 3 months with optimal plaque control, abutment connection was performed. On days 0, 20, 40, and 60 after placement of cotton ligatures, both microbiologic samples and periapical radiographs were obtained. The presence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Campylobacter spp, Capnocytophaga spp, Fusobacterium spp, beta-hemolytic Streptococcus, and Candida spp were evaluated culturally. Results: P intermedia/nigrescens was detected in 13.89% of implants at baseline and 100% of implants at other periods. P gingivalis was not detected at baseline, but after 20 and 40 days it was detected in 33.34% of implants and at 60 days it was detected in 29.03% of dental implants. Fusobacterium spp was detected in all periods. Streptococci were detected in 16.67% of implants at baseline and in 83.34%, 72.22%, and 77.42% of implants at 20, 40, and 60 days, respectively. Campylobacter spp and Candida spp were detected in low proportions. The total viable count analysis showed no significant differences among surfaces (P = .831), although a significant difference was observed after ligature placement (P < .0014). However, there was no significant qualitative difference, in spite of the difference among the periods. The peri-implant bone loss was not significantly different between all the dental implant surfaces (P = .908). Discussion and Conclusions: These data suggest that with ligature-induced peri-implantitis, both time and periodontal pathogens affect all surfaces equally after 60 days.
Resumo:
Background: Fibroblasts are now seen as active components of the immune response because these cells express Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns, and mediate the production of cytokines and chemokines during inflammation. The innate host response to lipopolysaccharide (LPS) from Porphyromonas gingivalis is unusual inasmuch as different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) and an antagonist or agonist for Toll-like receptor 4 (TLR4). This study investigates and compares whether signaling through TLR2 or TLR4 could affect the secretion of interleukin (IL)-6, IL-8, and stromal derived factor-1 (SDF-1/CXCL12) in both human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). Methods: After small interfering RNA-mediated silencing of TLR2 and TLR4, HGF and HPDLF from the same donors were stimulated with P. gingivalis LPS or with two synthetic ligands of TLR2, Pam2CSK4 and Pam3CSK4, for 6 hours. IL-6, IL-8, and CXCL12mRNA expression and protein secretion were evaluated by quantitative polymerase chain reaction and enzymelinked immunosorbent assay, respectively. Results: TLR2 mRNA expression was upregulated in HGF but not in HPDLF by all the stimuli applied. Knockdown of TLR2 decreased IL-6 and IL-8 in response to P. gingivalis LPS, or Pam2CSK4 and Pam3CSK4, in a similar manner in both fibroblasts subpopulations. Conversely, CXCL12 remained unchanged by TLR2 or TLR4 silencing. Conclusion: These results suggest that signaling through TLR2 by gingival and periodontal ligament fibroblasts can control the secretion of IL-6 and IL-8, which contribute to periodontal pathogenesis, but do not interfere with CXCL12 levels, an important chemokine in the repair process.
Resumo:
Chronic periodontitis (CP) is considered to be a multifactorial disease influenced by microbial and genetic factors. The aim of the present study was to investigate whether the genetic susceptibility to CP in individuals with the IL8 ATC/TTC haplotype is associated with subgingival levels of periodontopathogens. Sixty-five individuals, grouped according to the presence (n = 28) or absence (n = 37) of the IL8 haplotype, were evaluated. After clinical periodontal evaluation, each group was subdivided according to the presence (CP) or absence (H) of periodontitis. Four subgingival samples were obtained from CP and two samples per subject from H patients. The levels and proportions of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were analyzed using quantitative real-time polymerase chain reaction (q-PCR). No differences were found in the proportion of periodontopathogenic bacteria between groups with the presence or absence of the IL8 haplotype. However, in the CP groups, the levels of periodontopathogens were significantly higher in the individuals without the IL8 haplotype than in the individuals with the IL8 haplotype. These results suggest that periodontal destruction may occur in patients who are considered to be genetically susceptible to CP with a lower microbial challenge because of the presence of the IL8 ATC/TTC haplotype than in patients without this haplotype. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The aim of the present study was to evaluate the antimicrobial effect of antimicrobial photodynamic therapy (aPDT) in alveolar treatment of areas with induced periodontitis. Thirty male Wistar rats were subjected to ligature-induced periodontal disease (PD) in the first left inferior molars, while the right side molars did not receive ligatures. After 7 days of PD evolution, ligatures were removed from the left side, and the first left and right mandibular molars were extracted. Afterwards, animals were divided into groups according to the following treatments: control (C)-no treatment; mechanical debridement (MD)-mechanical debridement and irrigation with saline solution; and aPDT-mechanical debridement, irrigation with toluidine blue O (TBO), and 1 min of laser irradiation (GaAlAs, 660 nm, 30 mW, 32 J/cm2, 60 s). Ligatures were removed and samples of the alveolar content after extraction and after each treatment were collected for microbial processing by real-time polymerase chain reaction with specific primers for Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola. Data were submitted to statistical analysis by multiple comparison tests (McNemar test; p < 0.05). T. denticola was not found in the collected samples. A. actinomycetemcomitans and P. gingivalis were found in ligature samples. Tooth socket samples without periodontitis induction presented lesser microbial charge than samples with induced periodontitis (p < 0.05). aPDT significantly reduced A. actinomycetemcomitans levels on the left side (p < 0.05). It was concluded that aPDT was an effective antimicrobial treatment for tooth sockets in areas affected by induced periodontitis. © 2013 Springer-Verlag London.
Resumo:
Background: In a previous report, it was shown that Toll-like receptor (TLR) 2 knockdown modulates interleukin (IL)-6 and IL-8 but not the chemokine CXCL12, an important mediator with inflammatory and proangiogenic effects, in human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). This study investigates whether knocking down two important TLR adaptor molecules, such as myeloid differentiation protein 88 (MyD88) and TRIF-related adaptor molecule (TRAM), could affect mRNA expression of IL-6, IL-8, and CXCL12 in HGF and HPDLF. Methods: After small interfering (si) RNA-mediated silencing of MyD88 or TRAM, HGF and HPDLF were stimulated with Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) or two synthetic ligands of TLR2 (Pam2CSK4 and Pam3CSK4) for 6 hours. IL-6, IL-8, and CXCL12 mRNAs were evaluated by quantitative polymerase chain reaction. Results: Knockdown of MyD88 or TRAM partially impaired the IL-8 mRNA upregulation in both fibroblast subpopulations. Similarly, IL-6 upregulation was partially prevented by siMyD88 or siTRAM in HGF stimulated with Pg LPS, as well as in both fibroblast subtypes challenged with Pam2CSK4. Conversely, constitutive CXCL12 mRNA levels were upregulated by MyD88 or TRAM knockdown in non-stimulated cells. Conclusions: These results suggest that TLR adaptor molecules knockdown, such as MyD88 or TRAM, can decrease IL-6 and IL-8 mRNA and increase CXCL12 mRNA expression in HGF and HPDLF. This can be an important step for better understanding the mechanisms that control the inflammatory cytokine and chemokine expression, which in turn contributes to periodontal pathogenesis.
Resumo:
Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis. © 2013 Marjan Nokhbehsaim et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)