93 resultados para POLYPLOIDY
Resumo:
Worldwide, families Carangidae and Rachycentridae represent one of the groups most important commercial fish, used for food, and great potential for marine aquaculture. However, the genetic bases that can underpin the future cultivation of these species, cytogenetic between these aspects are very weak. The chromosomal patterns have provided basic data for the exploration of biotechnological processes aimed at handling chromosomal genetic improvement, such as induction of polyploidy, androgenesis and ginogenesis, as well as obtaining monosex stocks and interspecific hybridizations. This paper presents a comprehensive cytogenetic survey in 10 species, seven of the family Carangidae and the monotypic family Rachycentridae. Classical cytogenetic analysis and in situ mapping of multigene sequences were employed, and additionally for the genus Selene and morphotypes of Caranx lugubris, comparisons were made using geometric morphometrics. In general, conservative species exhibit a marked chromosome number (2n=48). Although present in large part, different karyotypic form, retain many characteristics typical of chromosomal Order Perciformes, the high number of elements monobrachyal, Ag-NORs/18S rDNA sites and heterochromatin simply reduced, preferably centromeric. The main mechanisms involved in karyotypic diversification are the pericentric inversions, with secondary action of centric fusions. In addition to physical mapping and chromosome detail for the species are presented and discussed patterns of intra-and interspecific diversity, cytotaxonomic markers. This data set provides a better understanding of these patterns caryoevolutyonary groups and conditions for the development of protocols based on Biotechnology for chromosomal manipulation Atlantic these species
Resumo:
without practical results so far. Protocols used in biotechnological cultured aquatic organisms aimed at increasing growth rates and disease resistance, have been studied and perfected. Among the available techniques, the application of chromosomal manipulation, although still nascent, is presented as a tool aimed at mitigating ecological and economical issues in shrimp farming. The polyploidization artificial method already employed in fish and shellfish, has been widely researched for use in farmed shrimp. Some limitations of this method of expansion in shrimp refer to a better knowledge of cytogenetic aspects, the level of sexual dimorphism and performance in growing conditions. To contribute on some of these issues, the present study aimed to characterize cytogenetic species Litopenaeus vannamei (Decapoda) and Artemia franciscana (Anostraca), analyze the effectiveness of methods for detection of ploidy, through the use of flow cytometry in processes of induction polyploidy cold thermal shock at different stages of development of newly fertilized eggs. Additionally, aimed also the qualitative and quantitative comparison of larval development between diploid and polyploid organisms, besides the identification of sexual dimorphism in L. vannamei, through geometric morphometrics. The results provide information relevant to the improvement and widespread use of biotechnological methods applied toward national productivity in shrimp farming
Resumo:
Aquatic plants of the genus Ruppia inhabit some of the most threatened habitats in the world, such as coastal lagoons and inland saline to brackish waters where their meadows play several key roles. The evolutionary history of this genus has been affected by the processes of hybridization, polyploidization, and vicariance, which have resulted in uncertainty regarding the number of species. In the present study, we apply microsatellite markers for the identification, genetic characterization, and detection of hybridization events among populations of putative Ruppia species found in the southern Iberian Peninsula, with the exception of a clearly distinct species, the diploid Ruppia maritima. Microsatellite markers group the populations into genetically distinct entities that are not coincident with geographical location and contain unique diagnostic alleles. These results support the interpretation of these entities as distinct species: designated here as (1) Ruppia drepanensis, (2) Ruppia cf. maritima, and (3) Ruppia cirrhosa. A fourth distinct genetic entity was identified as a putative hybrid between R. cf. maritima and R. cirrhosa because it contained a mixture of microsatellite alleles that are otherwise unique to these putative species. Hence, our analyses were able to discriminate among different genetic entities of Ruppia and, by adding multilocus nuclear markers, we confirm hybridization as an important process of speciation within the genus. In addition, careful taxonomic curation of the samples enabled us to determine the genotypic and genetic diversity and differentiation among populations of each putative Ruppia species. This will be important for identifying diversity hotspots and evaluating patterns of population genetic connectivity. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.