916 resultados para POLYPHENOL OXIDASE
Resumo:
Oxygen Consumption by alternative oxidase (AOX), present in mitochondria of many angiosperms, is known to be cyanide-resistant in contrast to cytochrome oxidase. Its activity in potato tuber (Solarium tuberosum L.) was induced following chilling treatment at 4 degrees C.About half of the total O-2 consumption of succinate oxidation in such mitochondria was found to be sensitive to SHAM, a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive oxygen consumption by nearly half, and addition at the end of the reaction released nearly half of the consumed oxygen by AOX, both typical of catalase action on H2O2. These findings with catalase suggest that the product of reduction of AOX is H2O2 and not H2O, as previously Surmised. In potatoes Subjected to chill stress (4 degrees C) for periods of 3, 5 and >= 8 days the activity of AOX in mitochondria increased progressively with a corresponding increase in the AOX protein detected by immunoblot of the protein.
Resumo:
From a study of 3 large half-sib families of cattle, we describe linkage between DNA polymorphisms on bovine chromosome 7 and meat tenderness. Quantitative trait loci (QTL) for Longissimus lumborum peak force (LLPF) and Semitendonosis adhesion (STADH) were located to this map of DNA markers, which includes the calpastatin ( CAST) and lysyl oxidase (LOX) genes. The LLPF QTL has a maximum lodscore of 4.9 and allele substitution of approximately 0.80 of a phenotypic standard deviation, and the peak is located over the CAST gene. The STADH QTL has a maximum lodscore of 3.5 and an allele substitution of approximately 0.37 of a phenotypic standard deviation, and the peak is located over the LOX gene. This suggests 2 separate likelihood peaks on the chromosome. Further analyses of meat tenderness measures in the Longissimus lumborum, LLPF and LL compression (LLC), in which outlier individuals or kill groups are removed, demonstrate large shifts in the location of LLPF QTL, as well as confirming that there are indeed 2 QTL on bovine chromosome 7. We found that both QTL are reflected in both LLPF and LLC measurements, suggesting that both these components of tenderness, myofibrillar and connective tissue, are detected by both measurements in this muscle.
Resumo:
The biosynthesis of the cytoplasmic subunits of cytochrome oxidase from rat liver has been studied in vitro by translating liver poly (A)-containing RNA in the wheat germ cell-free system and immunoprecipitating the products with anti-cytochrome oxidase antibody. Analysis of the labelled immunoprecipitate on SDS-gels does not reveal the presence of a polyprotein precursor. On the other hand discrete products which are either slightly bigger or closely similar to the mature subunits present in purified cytochrome oxidase have been detected.
Resumo:
Identifying species boundaries within morphologically indistinguishable cryptic species complexes is often contentious. For the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae), the lack of a clear understanding about the genetic limits of the numerous genetic groups and biotypes so far identified has resulted in a lack of consistency in the application of the terms, the approaches use to apply them and in our understanding of what genetic structure within B. tabaci means. Our response has been to use mitochondrial gene cytochrome oxidase one to consider how to clearly and consistently define genetic separation. Using Bayesian phylogenetic analysis and analysis of sequence pairwise divergence we found a considerably higher to number of genetic groups than had been previously determined with two breaks in the distribution, one at 11% and another at 3.5%. At >11% divergence, 11 distinct groups were resolved, whereas at >3.5% divergence 24 groups were identified. Consensus sequences for each of these groups were determined and were shown to be useful in the correct assignment of sequences of unknown origin. The 3.5% divergence bound is consistent with species level separations in other insect taxa and Suggests that B. tabaci is it cryptic species composed of at least 24 distinct species. We further show that the placement of Bemesia atriplex (Froggatt) within the B. tabaci in, group adds further weight to the argument for species level separation within B. tabaci. This new analysis, which constructs consensus sequences and uses these its a standard against which unknown sequences call be compared, provides for the first time it consistent means of identifying the genetic hounds of each species with it high degree of certainty.
Resumo:
Oxidation of NADH by rat erythrocyte plasma membrane was stimulated by about 50-fold on addition of decavanadate, but not other forms of vanadate like orthovanadate, metavanadate aad vanadyl sulphate. The vanadate-stimulated activity was observed only in phosphate buffer while other buffers like Tris, acetate, borate and Hepes were ineffective. Oxygen was consumed during the oxidation of NADH and the products were found to be NAD+ and hydrogen peroxide. The reaction had a stoichiometry of one mole of oxygen consumption and one mole of H2O2 production for every mole of NADH that was oxidized. Superoxide dismutase and manganous inhibited the activity indicating the involvement of superoxide anions. Electron spin resonance in the presence of a spin trap, 5, 5prime-dimethyl pyrroline N-oxide, indicated the presence of superoxide radicals. Electron spin resonance studies also showed the appearance of VIV species by reduction of VV of decavanadate indicating thereby participation of vanadate in the redox reaction. Under the conditions of the assay, vanadate did not stimulate lipid peroxidation in erythrocyte membranes. Extracts from lipid-free preparations of the erythrocyte membrane showed full activity. This ruled out the possibility of oxygen uptake through lipid peroxidation. The vanadate-stimulated NADH oxidation activity could be partially solubilized by treating erythrocyte membranes either with Triton X-100 or sodium cholate. Partially purified enzyme obtained by extraction with cholate and fractionation by ammonium sulphate and DEAE-Sephadex was found to be unstable.
Resumo:
Vanadate-dependent oxidation of NADH by xanthine oxidase does not require the presence of xanthine and therefore is not due to cooxidation. Addition of NADH or xanthine had no effect on the oxidation of the other substrate. Oxidation of NADH was high at acid pH and oxidation of xanthine was high at alkaline pH. The specific activity was relatively very high with NADH. Concentration-dependent oxidation of NADH was obtained in the presence of the polymeric form of vanadate, but not orthovanadate or metavanadate. Both NADH and NADPH were oxidized, as in the nonenzymatic system. Oxidation of NADH, but not xanthine, was inhibited by KCN, ascorbate, MnCl2, cytochrome c, mannitol, Tris, epinephrine, norepinephrine, and triiodothyronine. Oxidation of NADH was accompanied by uptake of oxygen and generation of H2O2 with a stoichiometry of 1:1:1 for NADH:O2:H2O2. A 240-nm-absorbing species was formed during the reaction which was different from H2O2 or superoxide. A mechanism of NADH oxidation is suggested wherein VV and O2 receive one electron each successively from NADH followed by VIV giving the second electron to superoxide and reducing it to H2O2.
Resumo:
Quantum effects are often of key importance for the function of biological systems at molecular level. Cellular respiration, where energy is extracted from the reduction of molecular oxygen to water, is no exception. In this work, the end station of the electron transport chain in mitochondria, cytochrome c oxidase, is investigated using quantum chemical methodology. Cytochrome c oxidase contains two haems, haem a and haem a3. Haem a3, with its copper companion, CuB, is involved in the final reduction of oxygen into water. This binuclear centre receives the necessary electrons from haem a. Haem a, in turn, receives its electrons from a copper ion pair in the vicinity, called CuA. Density functional theory (DFT) has been used to clarify the charge and spin distributions of haem a, as well as changes in these during redox activity. Upon reduction, the added electron is shown to be evenly distributed over the entire haem structure, important for the accommodation of the prosthetic group within the protein. At the same time, the spin distribution of the open-shell oxidised state is more localised to the central iron. The exact spin density distribution has been disputed in the literature, however, different experiments indicating different distributions of the unpaired electron. The apparent contradiction is shown to be due to the false assumption of a unit amount of unpaired electron density; in fact, the oxidised state has about 1.3 unpaired electrons. The validity of the DFT results have been corroborated by wave function based coupled cluster calculations. Point charges, for use in classical force field based simulations, have been parameterised for the four metal centres, using a newly developed methodology. In the procedure, the subsystem for which point charges are to be obtained, is surrounded by an outer region, with the purpose of stabilising the inner region, both electronically and structurally. Finally, the possibility of vibrational promotion of the electron transfer step between haem a and a3 has been investigated. Calculating the full vibrational spectra, at DFT level, of a combined model of the two haems, revealed several normal modes that do shift electron density between the haems. The magnitude of the shift was found to be moderate, at most. The proposed mechanism could have an assisting role in the electron transfer, which still seems to be dominated by electron tunnelling.
Resumo:
Treatment of N. crassa cultures with cycloheximide followed by washing and incubation in drug-free fresh medium results in a rapid decline in cytochrome oxidase activity. This is associated with the degradation of higher molecular weight subunits of cytochrome oxidase under these conditions. The protease activity associated with the mitochondrial preparation decreases during cycloheximide treatment and rapidly returns to normal levels on subsequent washing and transfer to drug-free fresh medium. It is suggested that the steady-state level of cytochrome oxidase is governed by a rapidly turning over cytoplasmically synthesized mitochondrial protease.
Resumo:
The role of heme in the synthesis of cytochrome c oxidase has been investigated in the mold Neurospora crassa. Iron-deficient cultures of the mold have low levels of cytochrome oxidase and delta-aminolevulinate dehydratase, the latter being the rate-limiting enzyme of the heme-biosynthetic pathway in this organism. Addition of iron to the iron-deficient cultures results in an immediate increase in the levels of delta-aminolevulinate dehydratase followed by an increase in the rate of heme synthesis and cytochrome oxidase levels. The rate of precursor labeling of the mitochondrial subunits of cytochrome oxidase is decreased preferentially under conditions of iron deficiency and addition of iron corrects this picture. Exogenous hemin addition which prevents iron-mediated induction of delta-aminolevulinate dehydratase also inhibits the increase in the activity of cytochrome oxidase and the enhanced precursor labeling of the mitochondrial subunits of cytochrome oxidase. Protein synthesis on mitoribosomes measured in vivo and in vitro is decreased under conditions of heme deficiency. Hemin addition in vitro to mitochondrial lysates prepared from heme-deficient mycelia restores a near normal rate of protein synthesis. It is concluded that heme is required for the optimal rate of translation on mitoribosomes.
Resumo:
Physical entrapment was used as an approach to achieve thermal stabilization of enzymes. The ti values for the thermoinactivation of glucose oxidase and glucoamylase were increased several-fold by their entrapment in polyacrylamide gels. In polyacrylate gels the individual enzymes behaved differently, probably owing to microenvironmental effects arising by the polyelectrolyte nature of the carrier.
Resumo:
An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed.
Resumo:
The oxidase-peroxidase from Datura innoxia which catalyses the oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid was also found to catalyse the oxidation of NADH in the presence of Mn2+ and formylphenylacetic acid ethyl ester. NADH was not oxidized in the absence of formylphenylacetic acid ethyl ester, although formylphenylacetonitrile or phenylacetaldehyde could replace it in the reaction. The reaction appeared to be complex and for every mol of NADH oxidized 3-4 g-atoms of oxygen were utilized, with a concomitant formation of approx. 0.8 mol of H2O2, the latter being identified by the starch-iodide test and decomposition by catalase. Benzoylformic acid ethyl ester was also formed in the reaction, but in a nonlinear fashion, indicating a lag phase. In the absence of Mn2+, NADH oxidation was not only very low, but itself inhibited the formation of benzoylformic acid ethyl ester from formylphenylacetic acid ethyl ester. A reaction mechanism for the oxidation of NADH in the presence of formylphenylacetic acid ethyl ester is proposed.
Resumo:
A cDNA library for 6S–9S poly(A)-containing RNA from rat liver was constructed in Image . Initial screening of the clones was carried out using single stranded 32P-labeled cDNA prepared against poly(A)-containing RNA isolated from immunoadsorbed polyribosomes enriched for the nuclear-coded subunit messenger RNAs of cytochrome c oxidase. One of the clones, pCO89, was found to hybridize with the messenger RNA for subunit VIC. The DNA sequence of the insert in pCO89 was carried out and it has got extensive homology with the C-terminal 33 amino acids of subunit VIC from beef heart cytochrome c oxidase. In addition, the insert contained 146 bp, corresponding to a portion of the 3′-non-coding region. Northern blot analysis of rat liver RNA with the nick-translated insert of pCO89 revealed that the messenger RNA for subunit VI would contain around 510 bases.
Resumo:
An inducible membrane-bound l-4-hydroxymandelate oxidase (decarboxylating) from Pseudomonas convexa has been solubilized and partially purified. It catalyzes the conversion of l-4-hydroxymandelic acid to 4-hydroxybenzaldehyde in a single step with the stoichiometric consumption of O2 and liberation of CO2. The enzyme is optimally active at pH 6.6 and at 55 oC. It requires FAD and Mn2+ for its activity. The membrane-bound enzyme is more stable than the solubilized and purified enzyme. After solubilization it gradually loses its activity when kept at 5 oC which can be fully reactivated by freezing and thawing. The Km values for DL-4-hydroxymandelate and FAD are 0.44 mM and 0.038 mM respectively. The enzyme is highly specific for DL-4-hydroxymandelic acid. DL-3,4-Dihydroxymandelic acid competitively inhibited the enzyme reaction. From the Dixon plot the Ki for DL-3,4-dihydroxymandelic acid was calculated to be 1.8 × 10−4 M. The enzyme is completely inactivated by thiol compounds and not affected by thiol inhibitors. The enzyme is also inhibited by denaturing agents, heavy metal ions and by chelating agents.
Resumo:
The respiratory chain is found in the inner mitochondrial membrane of higher organisms and in the plasma membrane of many bacteria. It consists of several membrane-spanning enzymes, which conserve the energy that is liberated from the degradation of food molecules as an electrochemical proton gradient across the membrane. The proton gradient can later be utilized by the cell for different energy requiring processes, e.g. ATP production, cellular motion or active transport of ions. The difference in proton concentration between the two sides of the membrane is a result of the translocation of protons by the enzymes of the respiratory chain, from the negatively charged (N-side) to the positively charged side (P-side) of the lipid bilayer, against the proton concentration gradient. The endergonic proton transfer is driven by the flow of electrons through the enzymes of the respiratory chain, from low redox-potential electron donors to acceptors of higher potential, and ultimately to oxygen. Cytochrome c oxidase is the last enzyme in the respiratory chain and catalyzes the reduction of dioxygen to water. The redox reaction is coupled to proton transport across the membrane by a yet unresolved mechanism. Cytochrome c oxidase has two proton-conducting pathways through which protons are taken up to the interior part of the enzyme from the N-side of the membrane. The K-pathway transfers merely substrate protons, which are consumed in the process of water formation at the catalytic site. The D-pathway transfers both substrate protons and protons that are pumped to the P-side of the membrane. This thesis focuses on the role of two conserved amino acids in proton translocation by cytochrome c oxidase, glutamate 278 and tryptophan 164. Glu278 is located at the end of the D-pathway and is thought to constitute the branching point for substrate and pumped protons. In this work, it was shown that although Glu278 has an important role in the proton transfer mechanism, its presence is not an obligatory requirement. Alternative structural solutions in the area around Glu278, much like the ones present in some distantly related heme-copper oxidases, could in the absence of Glu278 support the formation of a long hydrogen-bonded water chain through which proton transfer from the D-pathway to the catalytic site is possible. The other studied amino acid, Trp164, is hydrogen bonded to the ∆-propionate of heme a3 of the catalytic site. Mutation of this amino acid showed that it may be involved in regulation of proton access to a proton acceptor, a pump site, from which the proton later is expelled to the P-side of the membrane. The ion pair that is formed by the ∆-propionate of heme a3 and arginine 473 is likely to form a gate-like structure, which regulates proton mobility to the P-side of the membrane. The same gate may also be part of an exit path through which water molecules produced at the catalytically active site are removed towards the external side of the membrane. Time-resolved optical and electrometrical experiments with the Trp164 to phenylalanine mutant revealed a so far undetected step in the proton pumping mechanism. During the A to PR transition of the catalytic cycle, a proton is transferred from Glu278 to the pump site, located somewhere in the vicinity of the ∆-propionate of heme a3. A mechanism for proton pumping by cytochrome c oxidase is proposed on the basis of the presented results and the mechanism is discussed in relation to some relevant experimental data. A common proton pumping mechanism for all members of the heme-copper oxidase family is moreover considered.