884 resultados para POLY(ETHYLENE OXIDES)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Responsive biomaterials play important roles in imaging, diagnostics, and therapeutics. Polymeric nanoparticles (NPs) containing hydrophobic and hydrophilic segments are one class of biomaterial utilized for these purposes. The incorporation of luminescent molecules into NPs adds optical imaging and sensing capability to these vectors. Here we report on the synthesis of dual-emissive, pegylated NPs with "stealth"-like properties, delivered intravenously (IV), for the study of tumor accumulation. The NPs were created by means of stereocomplexation using a methoxy-terminated polyethylene glycol and poly(D-lactide) (mPEG-PDLA) block copolymer combined with iodide-substituted difluoroboron dibenzoylmethane-poly(L-lactide) (BF2dbm(I)PLLA). Boron nanoparticles (BNPs) were fabricated in two different solvent compositions to study the effects on BNP size distribution. The physical and photoluminescent properties of the BNPs were studied in vitro over time to determine stability. Finally, preliminary in vivo results show that stereocomplexed BNPs injected IV are taken up by tumors, an important prerequisite to their use as hypoxia imaging agents in preclinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene oxide) (PEO) is one of the most researched synthetic polymers due to the complex behavior which arises from the interplay of the hydrophilic and hydrophobic sites on the polymer chain. PEO in ethanol forms an opaque gel-like mixture with a partially crystalline structure. Addition of a small amount of water disrupts the gel: 5 wt % PEO in ethanol becomes a transparent solution with the addition of 4 vol % water. The phase behavior of PEO in mixed solvents have been studied using small-angle neutron scattering (SANS). PEO solutions (5 wt % PEO) which contain 4 vol % - 10 vol % (and higher) water behave as an athermal polymer solution and the phase behavior changes from UCST to LCST rapidly as the fraction of water is increased. 2 wt % PEO in water and 10 wt % PEO in ethanol/ water mixtures are examined to assess the role of hydration. The observed phase behavior is consistent with a hydration layer forming upon the addition of water as the system shifts from UCST to LCST behavior. At the molecular level, two or three water molecules can hydrate one PEO monomer (water molecules form a sheath around the PEO macromolecule) which is consistent with the suppression of crystallization and change in the mentioned phase behavior as observed by SANS. The clustering effect of aqueous PEO solution (M.W of PEO = 90,000 g/mol) is monitored as an excess scattering intensity at low-Q. Clustering intensity at Q = 0.004 Å^-1 is used for evaluating the clustering effect. The clustering intensity is proportional to the inverse temperature and levels off when the temperature is less than 50 ˚C. When the temperature is increased over 50 ˚C, the clustering intensity starts decreasing. The clustering of PEO is monitored in ethanol/ water mixtures. The clustering intensity increases as the fraction of water is increased. Based on the solvation intensity behavior, we confirmed that the ethanol/ water mixtures obey a random solvent mixing rule, whereby solvent mixtures are better at solvating the polymer that any of the two solvents. The solution behavior of PEO in ethanol was investigated in the presence of salt (CaCl2) using SANS. Binding of Ca2+ ions to the PEO oxygens transforms the neutral polymer to a weakly charged polyelectrolyte. We observed that the PEO/ethanol solution is better solvated at higher salt concentration due to the electrostatic repulsion of weakly charged monomers. The association of the Ca2+ ions with the PEO oxygen atoms transforms the neutral polymer to a weakly charged polyelectrolyte and gives rise to repulsive interactions between the PEO/Ca2+ complexes. Addition of salt disrupts the gel, which is consistent with better solvation as the salt concentration is increased. Moreover, SANS shows that the phase behavior of PEO/ethanol changes from UCST to LCST as the salt concentration is increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the poly(ethylene glycol) (PEG) plasticizer content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) was investigated with tensile mechanical testing, thermal analysis, and attenuated total reflectance/Fourier transform infrared spectroscopy. Unplasticized films and those containing high copolymer contents were very difficult to handle and proved difficult to test. PEG with a molecular weight of 200 Da was the most efficient plasticizer. However, films cast from aqueous blends containing 10% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 4 : 3 and those cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 2 : 1 possessed mechanical properties most closely mimicking those of a formulation we have used clinically in photodynamic therapy. Importantly, we found previously that films cast from aqueous blends containing 10% (w/w) PMVE/MA performed rather poorly in the clinical setting, where uptake of moisture from patients' skin led to reversion of the formulation to a thick gel. Consequently, we are now investigating films cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000, where the copolymer/plasticizer ratio is 2 : 1, as possible Food and Drug Administration approved replacements for our current formulation, which must currently be used only on a named patient basis as its plasticizer, tripropylene glycol methyl ether, is not currently available in pharmaceutical grade

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABSs) have been investigated as tunable reaction media, in the example presented here, to control the oxidation of cyclohexene to adipic acid with hydrogen peroxide. The production of adipic acid was found to increase from the monophasic to the biphasic regimes, was greatest at short tie-line lengths (close to the system's critical point), and demonstrates how control of the ABS media, through changes in system composition, PEG, salt, and tie-line length, can be used to readily tune and control reactivity and product isolation in these aqueous biphasic reactive extraction systems. Challenges in using this system, including possible oxidation reactions of the PEG-OH end groups, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conductive ionic liquid -poly(ethylene glycol) (IL-PEG) gels have been prepared by gelation of the hydrophobic ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [(C(6)mim] [NTf2]) by the cross-linking reaction of disuccinimidylpropyl PEG monomers with four-arm tetraamine PEG cross-linkers. This is the first time that a crosslinked PEG matrix, such as this, has been used to gel nonaqueous solvents. Initial studies screening other ionic liquids as solvents indicate that the gelation of the ionic liquid is both cation and anion dependent with smaller, coordinating cations disrupting or preventing gel formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm-1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer–water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.