885 resultados para PI 3-kinase
Inhibition of phosphatidylinositol 3-kinase activity by association with 14-3-3 proteins in T cells.
Resumo:
Proteins of the 14-3-3 family can associate with, and/or modulate the activity of, several protooncogene and oncogene products and, thus, are implicated in regulation of signaling pathways. We report that 14-3-3 is associated with another important transducing enzyme, phosphatidylinositol 3-kinase (PI3-K). A recombinant 14-3-3 fusion protein bound several tyrosine-phosphorylated proteins from antigen receptor-stimulated T lymphocytes. PI3-K was identified by immunoblotting and enzymatic assays as one of the 14-3-3-binding proteins in resting or activated cells. Moreover, endogenous 14-3-3 and PI3-K were coimmunoprecipitated from intact T cells. Far-Western blots of gel-purified, immunoprecipitated PI3-K with a recombinant 14-3-3 fusion protein revealed direct binding of 14-3-3 to the catalytic subunit (p110) of PI3-K. Finally, anti-phosphotyrosine immunoprecipitates from activated, 14-3-3-overexpressing cells contained lower PI3-K enzymatic activity than similar immunoprecipitates from control cells. These findings suggest that association of 14-3-3 with PI3-K in hematopoietic (and possibly other) cells regulates the enzymatic activity of PI3-K during receptor-initiated signal transduction.
Resumo:
Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.
Resumo:
CD28 is a costimulatory receptor found on the surface of most T lymphocytes. Engagement of CD28 induces interleukin 2 (IL-2) production and cell proliferation when combined with an additional signal such as treatment with phorbol ester, an activator of protein kinase C. Recent studies have established that after CD28 ligation, the cytoplasmic domain of CD28 can bind to the 85-kDa subunit of phosphatidylinositol 3-kinase (PI3 kinase). There is a concomitant increase in PI3 lipid kinase activity that may be important in CD28 signaling. Despite the requirement of phorbol 12-myristate 13-acetate (PMA) for effector function, we have found, however, that treatment of Jurkat T cells with the phorbol ester PMA dramatically inhibits (i) the association of PI3 kinase with CD28, (ii) the ability of p85 PI3 kinase to be immunoprecipitated by anti-phosphotyrosine antibodies, and (iii) the induction of PI3 kinase activity after stimulation of the cells with the anti-CD28 monoclonal antibody 9.3. These changes occur within minutes of PMA treatment and are persistent. In addition, we have found that wortmannin, a potent inhibitor of PI3 kinase, does not interfere with the induction of IL-2 after stimulation of Jurkat T cells with anti-CD28 monoclonal antibody and PMA. We conclude that PI3 kinase activity may not be required for CD28-dependent IL-2 production from Jurkat T cells in the presence of PMA.
Resumo:
Classic cadherins are adhesion-activated cell signaling receptors. In particular, homophilic cadherin ligation can directly activate Rho family GTPases and phosphatidylinositol 3-kinase (PI3-kinase), signaling molecules with the capacity to support the morphogenetic effects of these adhesion molecules during development and disease. However, the molecular basis for cadherin signaling has not been elucidated, nor is its precise contribution to cadherin function yet understood. One attractive hypothesis is that cadherin-activated signaling participates in stabilizing adhesive contacts ( Yap, A. S., and Kovacs, E. M. ( 2003) J. Cell Biol. 160, 11-16). We now report that minimal mutation of the cadherin cytoplasmic tail to uncouple binding of p120-ctn ablated the ability of E-cadherin to activate Rac. This was accompanied by profound defects in the capacity of cells to establish stable adhesive contacts, defects that were rescued by sustained Rac signaling. These data provide direct evidence for a role of cadherin-activated Rac signaling in contact formation and adhesive stabilization. In contrast, cadherin-activated PI3-kinase signaling was not affected by loss of p120-ctn binding. The molecular requirements for E-cadherin to activate Rac signaling thus appear distinct from those that stimulate PI3-kinase, and we postulate that p120-ctn may play a central role in the E-cadherin-Rac signaling pathway.
Resumo:
Neurotransmitter release and hormonal secretion are highly regulated processes culminating in the calcium-dependent fusion of secretory vesicles with the plasma membrane. Here, we have identified a role for phosphatidylinositol 3-kinase C2 alpha (PI3K-C2 alpha) and its main catalytic product, PtdIns3P, in regulated exocytosis. In neuroendocrine cells, PI3K-C2 alpha is present on a subpopulation of mature secretory granules. Impairment of PI3K-C2 alpha function specifically inhibits the ATP-dependent priming phase of exocytosis. Overexpression of wild-type PI3K-C2 alpha enhanced secretion, whereas transfection of PC12 cells with a catalytically inactive PI3K-C2 alpha mutant or a 2xFYVE domain sequestering PtdIns3P abolished secretion. Based on these results, we propose that production of PtdIns3P by PI3K-C2 alpha is required for acquisition of fusion competence in neurosecretion.
Resumo:
In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.
Resumo:
Bacterial CpG-containing (CpG) DNA promotes survival of murine macrophages and triggers production of proinflammatory mediators. The CpG DNA-induced inflammatory response is mediated via TLR9, whereas a recent study reported that activation of the Akt prosurvival pathway occurs via DNA-dependent protein kinase (DNA-PK) and independently. of TLR9. We show, in this study, that Akt activation and survival of murine bone marrow-derived macrophages (BMM) triggered by CpG-containing phosphodiester oligodeoxynucleotides or CpG-containing phosphorothioate oligodeoxynucleotides was completely dependent on TLR9. In addition, survival triggered by CpG-containing phosphodiester oligodeoxynucleotides was not compromised in BMM from SCID mice that express a catalytically inactive form of DNA-PK. CpG DNA-induced survival of BMM was inhibited by the PI3K inhibitor, LY294002, but not by the MEK1/2 inhibitor, PD98059. The effect of LY294002 was specific to survival, because treatment of BMM with LY294002 affected CpG DNA-induced TNF-alpha production only modestly. Therefore, CpG DNA activates macrophage survival via TLR9 and the PI3K-Akt pathway and independently of DNA-PK and MEK-ERK.
Resumo:
In the present study the role of Akt/PKB (protein kinase B) in PIF- (proteolysis-inducing factor) induced protein degradation has been investigated in murine myotubes. PIF induced transient phosphorylation of Akt at Ser(473) within 30 min, which was attenuated by the PI3K (phosphoinositide 3-kinase) inhibitor LY294002 and the tyrosine kinase inhibitor genistein. Protein degradation was attenuated in myotubes expressing a dominant-negative mutant of Akt (termed DNAkt), compared with the wild-type variant, whereas it was enhanced in myotubes containing a constitutively active Akt construct (termed MyrAkt). A similar effect was observed on the induction of the ubiquitin-proteasome pathway. Phosphorylation of Akt has been linked to up-regulation of the ubiquitin-proteasome pathway through activation of NF-kappaB (nuclear factor kappaB) in a PI3K-dependent process. Protein degradation was attenuated by rapamycin, a specific inhibitor of mTOR (mammalian target of rapamycin), when added before, or up to 30 min after, addition of PIF. PIF induced transient phosphorylation of mTOR and the 70 kDa ribosomal protein S6 kinase. These results suggest that transient activation of Akt results in an increased protein degradation through activation of NF-kappaB and that this also allows for a specific synthesis of proteasome subunits.
Resumo:
Visfatin is an adipogenic adipokine with increased levels in obesity, properties common to leptin. Thus, leptin may modulate visfatin production in adipose tissue (AT). Therefore, we investigated the effects of leptin on visfatin levels in 3T3-L1 adipocytes and human/murine AT, with or without a leptin antagonist. The potential signaling pathways and mechanisms regulating visfatin production in AT was also studied. Real-time RT-PCR and Western blotting were used to assess the relative mRNA and protein expression of visfatin. ELISA was performed to measure visfatin levels in conditioned media of AT explants, and small interfering RNA technology was used to reduce leptin receptor expression. Leptin significantly (P<0.01) increased visfatin levels in human and murine AT with a maximal response at leptin 10(-9) M, returning to baseline at leptin 10(-7) M. Importantly, ip leptin administration to C57BL/6 ob/ob mice further supported leptin-induced visfatin protein production in omental AT (P<0.05). Additionally, soluble leptin receptor levels rose with concentration dependency to a maximal response at leptin 10(-7) M (P<0.01). The use of a leptin antagonist negated the induction of visfatin and soluble leptin receptor by leptin. Furthermore, leptin-induced visfatin production was significantly decreased in the presence of MAPK and phosphatidylinositol 3-kinase inhibitors. Also, when the leptin eceptor gene was knocked down using small interfering RNA, eptin-induced visfatin expression was significantly decreased. Thus, leptin increases visfatin production in AT in vivo and ex vivo via pathways involving MAPK and phosphatidylinositol 3-kinase signaling. The pleiotropic effects of leptin may be partially mediated by visfatin.
Resumo:
Objective— Tie2 and its ligands, the angiopoietins (Ang), are required for embryonic and postnatal angiogenesis. Previous studies have demonstrated that Tie2 is proteolytically cleaved, resulting in the production of a 75-kDa soluble receptor fragment (sTie2). We investigated mechanisms responsible for Tie2 shedding and its effects on Tie2 signaling and endothelial cellular responses. Methods and Results— sTie2 bound both Ang1 and Ang2 and inhibited angiopoietin-mediated Tie2 phosphorylation and antiapoptosis. In human umbilical vein endothelial cells, Tie2 shedding was both constitutive and induced by treatment with PMA or vascular endothelial growth factor (VEGF). Constitutive and VEGF-inducible Tie2 shedding were mediated by PI3K/Akt and p38 MAPK. Tie2 shedding was blocked by pharmacological inhibitors of either PI3K or Akt as well as by overexpression of the lipid phosphatase PTEN. In contrast, sTie2 shedding was enhanced by overexpression of either dominant negative PTEN, which increased Akt phosphorylation, or constitutively active, myristoylated Akt. Conclusions— These findings demonstrate that VEGF regulates angiopoietin-Tie2 signaling by inducing proteolytic cleavage and shedding of Tie2 via a novel PI3K/Akt-dependent pathway. These results suggest a previously unrecognized mechanism by which VEGF may inhibit vascular stabilization to promote angiogenesis and vascular remodeling.
Resumo:
Vascular insufficiency and retinal ischemia precede many proliferative retinopathies and stimulate secretion of various vasoactive growth factors, including vascular endothelial growth factor (VEGF) and placenta growth factor (PlGF). It is unclear, however, how PlGF, which is elevated in proliferative diabetic retinopathy and is a VEGF homolog that binds only to VEGF receptor (VEGFR)-1, promotes pathological angiogenesis. When primary microvascular endothelial cells were grown on collagen gels, PlGF-containing ligands upregulated Bcl-2 expression and stimulated the formation of capillary-like tube networks that were retained for up to 14 days in culture. The inhibition of VEGFR-1 results in a dramatic decrease in the number of capillary connections, indicating that VEGFR-1 ligands promote branching angiogenesis. In contrast, VEGF-induced tube formations and Bcl-2 expression were significantly decreased at the end of this period. Flow cytometry analysis of annexin-V/propidium iodide-stained cells revealed that PlGF and PlGF/VEGF heterodimer inhibited apoptosis in serum-deprived endothelial cells. These two growth factors stimulated a survival signaling pathway phosphatidylinositol 3-kinase (PI3K), as identified by increased Akt phosphorylation and because blocking PI3K signalling by adenovirus-mediated overexpression of wild-type phosphatase and tensin homolog on chromosome 10 (PTEN) disrupted angiogenesis and decreased Bcl-2 expression by PlGF and PlGF/VEGF heterodimer, whereas a dominant-negative PTEN mutant enhanced endothelial sprout formation and Bcl-2 expression. Together, these findings indicate that PlGF-containing ligands contribute to pathological angiogenesis by prolonging cell survival signals and maintaining vascular networks.
Resumo:
Anaplasma phagocytophilum, a Gram-negative, obligate intracellular bacterium infects primarily neutrophil granulocytes. Infection with A. phagocytophilum leads to inhibition of neutrophil apoptosis and consequently contributes to the longevity of the host cells. Previous studies demonstrated that the infection inhibits the executionary apoptotic machinery in neutrophils. However, little attempt has been made to explore which survival signals are modulated by the pathogen. The aim of the present study was to clarify whether the phosphatidylinositol 3-kinase (PI3K)/Akt and NF-?B signaling pathways, which are considered as important survival pathways in neutrophils, are involved in A. phagocytophilum-induced apoptosis delay. Our data show that infection of neutrophils with A. phagocytophilum activates the PI3K/Akt pathway and suggest that this pathway, which in turn maintains the expression of the antiapoptotic protein Mcl-1, contributes to the infection-induced apoptosis delay. In addition, the PI3K/Akt pathway is involved in the activation of NF-?B in A. phagocytophilum-infected neutrophils. Activation of NF-?B leads to the release of interleukin-8 (IL-8) from infected neutrophils, which, in an autocrine manner, delays neutrophil apoptosis. In addition, enhanced expression of the antiapoptotic protein cIAP2 was observed in A. phagocytophilum-infected neutrophils. Taken together, the data indicate that upstream of the apoptotic cascade, signaling via the PI3K/Akt pathway plays a major role for apoptosis delay in A. phagocytophilum-infected neutrophils.