233 resultados para PHEROMONE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unlike queens of typical primitively eusocial species, Ropalidia marginata queens are docile and non-interactive, and hence cannot be using dominance to maintain their status. It appears that the queen maintains reproductive monopoly through a pheromone, of which the Dufour's gland is at least one source. Here, we reconfirm earlier results showing that queens and workers can be correctly classified on a discriminant function using the compositions of their respective Dufour's glands, and also demonstrate consistent queen-worker differences based on categories of compounds and on single compounds also in some cases. Since the queen pheromone is expected to be an honest signal of the fecundity of a queen, we investigate the correlation of Dufour's gland compounds with ovarian activation of queens. Our study shows that Dufour's gland compounds in R. marginata correlate with the state of ovarian activation of queens, suggesting that such compounds may portray the fecundity of a queen, and may indeed function as honest signals of fertility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queens of the primitively eusocial wasp Ropalidia marginata appear to maintain reproductive monopoly through pheromone rather than through physical aggression. Upon queen removal, one of the workers (potential queen, PQ) becomes extremely aggressive but drops her aggression immediately upon returning the queen. If the queen is not returned, the PQ gradually drops her aggression and becomes the next queen of the colony. In a previous study, the Dufour's gland was found to be at least one source of the queen pheromone. Queen-worker classification could be done with 100% accuracy in a discriminant analysis, using the compositions of their respective Dufour's glands. In a bioassay, the PQ dropped her aggression in response to the queen's Dufour's gland macerate, suggesting that the queen's Dufour's gland contents mimicked the queen herself. In the present study, we found that the PQ also dropped her aggression in response to the macerate of a foreign queen's Dufour's gland. This suggests that the queen signal is perceived across colonies. This also suggests that the Dufour's gland in R. marginata does not contain information about nestmateship, because queens are attacked when introduced into foreign colonies, and hence PQ is not expected to reduce her aggression in response to a foreign queen's signal. The latter conclusion is especially significant because the Dufour's gland chemicals are adequate to classify individuals correctly not only on the basis of fertility status (queen versus worker) but also according to their colony membership, using discriminant analysis. This leads to the additional conclusion (and precaution) that the ability to statistically discriminate organisms using their chemical profiles does not necessarily imply that the organisms themselves can make such discrimination. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queens of many social insect species are known to maintain reproductive monopoly by pheromonal signalling of fecundity. Queens of the primitively eusocial wasp Ropalidia marginata appear to do so using secretions from their Dufour's glands, whose hydrocarbon composition is correlated with fertility. Solitary nest foundresses of R. marginata are without nestmates; hence expressing a queen signal can be redundant, since there is no one to receive the signal. But if queen pheromone is an honest signal inextricably linked with fertility, it should correlate with fertility and be expressed irrespective of the presence or absence of receivers of the signal, by virtue of being a byproduct of the state of fertility. Hence we compared the Dufour's gland hydrocarbons and ovaries of solitary foundresses with queens and workers of post-emergence nests. Our results suggest that queen pheromone composition in R. marginata is a byproduct of fertility and hence can honestly signal fertility. This provides important new evidence for the honest signalling hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ropalidia marginata, a primitively eusocial wasp, is different from typical primitively eusocial species in having docile queens who cannot be using dominance to maintain reproductive monopoly and instead appear to use a pheromone from the Dufour's gland to do so. When a docile queen is removed from her colony, one of the workers (potential queen, PQ) becomes highly aggressive, and if the queen is not returned, gradually loses her aggression and becomes the new docile queen within a few days. We hypothesized that the decrease in aggression of the PQ with time since queen removal should be correlated with her change in ovaries and pheromone profile. Because the Dufour's gland hydrocarbon composition in R.marginata can be correlated with fertility, this also gave us an opportunity to test whether PQ is different from workers in her Dufour's gland hydrocarbons. In this study, we therefore trace the road to royalty in R.marginata, that is, the transition of the PQ during queen establishment, in terms of her ovaries, aggression, and Dufour's gland hydrocarbons. Our study focuses on queen establishment, which is important for understanding how reproductive conflict can be manifested and resolved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical signaling is a prominent mode of male-female communication among elephants, especially during their sexually active periods. Studies on the Asian elephant in zoos have shown the significance of a urinary pheromone (Z7-12:Ac) in conveying the reproductive status of a female toward the opposite sex. We investigated the additional possibility of an inter-sexual chemical signal being conveyed through dung. Sixteen semi-captive adult male elephants were presented with dung samples of three female elephants in different reproductive phases. Each male was tested in 3 separate trials, within an interval of 1-3 days. The trials followed a double-blind pattern as the male and female elephants used in the trials were strangers, and the observer was not aware of the reproductive status of females during the period of bioassays. Males responded preferentially (P < 0.005), in terms of higher frequency of sniff, check and place behavior toward the dung of females close to pre-ovulatory period (follicular-phase) as compared to those in post-ovulatory period (luteal-phase). The response toward the follicular phase samples declined over repeated trials though was still significantly higher than the corresponding response toward the non-ovulatory phase in each of the trials performed. This is the first study to show that male Asian elephants were able to distinguish the reproductive phase of the female by possibly detecting a pre-ovulatory pheromone released in dung. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ropalidia marginata is a primitively eusocial paper wasp found in peninsular India, where recent work suggests the role of the Dufour's gland hydrocarbons in queen signaling. It appears that the queen signals her presence to workers by rubbing the tip of her abdomen on the nest surface, thereby presumably applying her Dufour's gland secretion to the nest. Since the queen alone produces pheromone from the Dufour's gland and also applies it on the nest surface, the activity level of queen gland should be higher than that of worker gland, as the gland contents would have to get replenished periodically for queens but not for workers. The difference in activity level can be manifested in difference in Dufour's gland morphology, larger glands implying higher activity levels and smaller glands implying lower activity levels, as positive correlation between gland size and gland activity has been reported in exocrine glands of various taxa (including Hymenopteran insects). Hence we investigated whether there is any size difference between Dufour's glands of queens and workers in R. marginata. We found that there was no difference between queens and workers in their Dufour's gland size, implying that Dufour's gland activity and Dufour's gland size are likely to be uncorrelated in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sex pheromones are vital in communication between individuals belonging to opposite sexes and form an integral part of the reproductive biology of various species. Among insects, sexual dimorphism in CHCs has been reported from diverse taxa spanning seven different orders, and thereby CHCs have been implicated as sex pheromones. Because males and females of the primitively eusocial wasp Ropalidia marginata touch each other with their antennae during mating, before engaging in sperm transfer, a sex pheromone that is perceived via contact chemosensation through the antennae can possibly exist in this species. Since CHCs have been implied as sex pheromones in various insects (including hymenopterans), and since sexual dimorphism of CHCs should be an obligatory prerequisite for them to act as sex pheromones, we investigated whether males and females of R. marginata differ in their CHC profiles. We found only nonvolatile CHCs, and our results show absence of sexual dimorphism in CHCs, suggesting that CHCs do not function as sex pheromone in this species. A behavioral assay failed to show presence of mate attraction at a distance, thereby showing the absence of volatile long-distance mate attraction cues (that may originate from sources other than and in addition to CHCs).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner in which food and females promotes aggression.

In the first chapter, we explore how food controls aggression. As in many other species, food promotes aggression in flies, but it is not clear whether food increases aggression per se, or whether aggression is a secondary consequence of increased social interactions caused by aggregation of flies on food. Furthermore, nothing is known about how animals evaluate the quality and quantity of food in the context of competition. We show that food promotes aggression independently of any effect to increase the frequency of contact between males. Food increases aggression but not courtship between males, suggesting that the effect of food on aggression is specific. Next, we show that flies tune the level of aggression according to absolute amount of food rather than other parameters, such as area or concentration of food. Sucrose, a sugar molecule present in many fruits, is sufficient to promote aggression, and detection of sugar via gustatory receptor neurons is necessary for food-promoted aggression. Furthermore, we show that while food is necessary for aggression, too much food decreases aggression. Finally, we show that flies exhibit strategies consistent with a territorial strategy. These data suggest that flies use sweet-sensing gustatory information to guide their decision to fight over a limited quantity of a food resource.

Following up on the findings of the first chapter, we asked how the presence of a conspecific female resource promotes male-male aggression. In the absence of food, group-housed male flies, who normally do not fight even in the presence of food, fight in the presence of females. Unlike food, the presence of females strongly influences proximity between flies. Nevertheless, as group-housed flies do not fight even when they are in small chambers, it is unlikely that the presence of female indirectly increases aggression by first increasing proximity. Unlike food, the presence of females also leads to large increases in locomotion and in male-female courtship behaviors, suggesting that females may influence aggression as well as general arousal. Female cuticular hydrocarbons are required for this effect, as females that do not produce CH pheromones are unable to promote male-male aggression. In particular, 7,11-HD––a female-specific cuticular hydrocarbon pheromone critical for male-female courtship––is sufficient to mediate this effect when it is perfumed onto pheromone-deficient females or males. Recent studies showed that ppk23+ GRNs label two population of GRNs, one of which detects male cuticular hydrocarbons and another labeled by ppk23 and ppk25, which detects female cuticular hydrocarbons. I show that in particular, both of these GRNs control aggression, presumably via detection of female or male pheromones. To further investigate the ways in which these two classes of GRNs control aggression, I developed new genetic tools to independently test the male- and female-sensing GRNs. I show that ppk25-LexA and ppk25-GAL80 faithfully recapitulate the expression pattern of ppk25-GAL4 and label a subset of ppk23+ GRNs. These tools can be used in future studies to dissect the respective functions of male-sensing and female-sensing GRNs in male social behaviors.

Finally, in the last chapter, I discuss quantitative approaches to describe how varying quantities of food and females could control the level of aggression. Flies show an inverse-U shaped aggressive response to varying quantities of food and a flat aggressive response to varying quantities of females. I show how two simple game theoretic models, “prisoner’s dilemma” and “coordination game” could be used to describe the level of aggression we observe. These results suggest that flies may use strategic decision-making, using simple comparisons of costs and benefits.

In conclusion, male-male aggression in Drosophila is controlled by simple gustatory cues from food and females, which are detected by gustatory receptor neurons. Different quantities of resource cues lead to different levels of aggression, and flies show putative territorial behavior, suggesting that fly aggression is a highly strategic adaptive behavior. How these resource cues are integrated with male pheromone cues and give rise to this complex behavior is an interesting subject, which should keep researchers busy in the coming years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alkali metal salts of 1,5-hexadien-3-ols undergo accelerated Cope rearrangements to the enolates of δ, ε-unsaturated carbonyl compounds. The generality of the rearrangement was investigated in numerous systems, particularly acyclic cases, and the effect of changes in substituents, counterions, solvents, and geometrical structures were noted and discussed. Applications of this methodology in synthesis included the synthesis of the insect pheromone frontalin, the preparation of selectively monoprotected 1,6-dicarbonyl compounds from 4-methoxy- and 4-phenylthio-1,5-hexadien-3-ols, and the construction of complex ring structures such as a D-homo-estratetraenone derivative.

Thermochemical estimates of the energetics of anionpromoted alkoxide fragmentations were made, and in all cases heterolytic cleavage was favored over hemolytic cleavage by 8.5-53 kcal/mol. The implication of these and other thermochemical estimates is that the anionic oxy-Cope rearrangement occurs via a concerted mechanism rather than a dissociation-recombination process. The concepts of anion-induced bond weakening were successfully applied to an accelerated [1,3]-shift of a dithiane fragment in a cyclohexenyl system. Trapping experiments demonstrated that > 85% of the [1,3]-shift occurred within a solvent cage. Attempts at promoting an intramolecular ene reaction using the potassium salts of 2,7-octadien-1-o1 and 2,8-nonadien-1-o1 were unsuccessful. A general review of anion-promoted bond reorganizations and anion substituent effects is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral Thesis defines and develops a new methodology for feeder reconfiguration in distribution networks with Distributed Energy Resources (DER). The proposed methodology is based on metaheuristic Ant Colony Optimization (ACO) algorithms. The methodology is called Item Oriented Ant System (IOAS) and the doctoral Thesis also defines three variations of the original methodology, Item Oriented Ant Colony System (IOACS), Item Oriented Max-min Ant System (IOMMAS) y Item Oriented Max-min Ant Colony System (IOACS). All methodologies pursue a twofold objective, to minimize the power losses and maximize DER penetration in distribution networks. The aim of the variations is to find the algorithm that adapts better to the present optimization problem, solving it most efficiently. The main feature of the methodology lies in the fact that the heuristic information and the exploitation information (pheromone) are attached to the item not to the path. Besides, the doctoral Thesis proposes to use feeder reconfiguration in order to increase the distribution network capacity of accepting a major degree of DER. The proposed methodology and its three variations have been tested and verified in two distribution networks well documented in the existing bibliography. These networks have been modeled and used to test all proposed methodologies for different scenarios with various DER penetration degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

生物对外界环境中化学物质信号的识别和感知对其生存有着极其重要的意义.大多数哺乳动物具有两条嗅觉通路,主要嗅觉系统(MOS)用来感受普通嗅觉信号,而犁鼻器系统(VNS)则从异常灵敏的程度来识别小范围内特异性的化学感应信号-信息素(pheromone).信息素是一类在同种内个体间传递的物质,可引发群体内与个体交流和生殖相关的一系列生理和行为变化.本文综述了对哺乳动物犁鼻器信息素感知及犁鼻器系统特异(VNS-specific)基因的分子进化研究进展,这些基因包括信息素受体家族V1R和V2R以及离子通道TRPC2,为进一步深入研究哺乳动物信息素感知的分子机制奠定基础。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pheromones are chemicals produced and detected by conspecifics to elicit social/sexual physiological and behavioral responses, and they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. Two large superfamilies of G protein-coupled receptors, V1rs and V2rs, have been identified as pheromone receptors in vomeronasal sensory neurons. Based on a computational analysis of the mouse and rat genome sequences, we report the first global draft of the V2r gene repertoire, composed of similar to 200 genes and pseudogenes. Rodent V2rs are subject to rapid gene births/deaths and accelerated amino acid substitutions, likely reflecting the species-specific nature of pheromones. Vertebrate V2rs appear to have originated twice prior to the emergence of the VNO in ancestral tetrapods, explaining seemingly inconsistent observations among different V2rs. The identification of the entire V2r repertoire opens the door to genomic-level studies of the structure, function, and evolution of this diverse group of sensory receptors. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vomeronasal receptor 1 (V1R) are believed to be pheromone receptors in rodents. Here we used computational methods to identify 95 and 62 new putative V1R genes from the draft rat and mouse genome sequence, respectively. The rat V1R repertoire consists of 11 subfamilies, 10 of which are shared with the mouse, while rat appears to lack the H and I subfamilies found in mouse and possesses one unique subfamily (M). The estimations of the relative divergence times suggest that many subfamilies originated after the split of rodents and primates. The analysis also reveals that these clusters underwent an expansion very close to the split of mouse and rat. In addition, maximum likelihood analysis showed that the nonsynonymous and synonymous rate ratio for most of these clusters was much higher than one, suggesting the role of positive selection in the diversification of these duplicated V1R genes. Because V1R are thought to mediate the process of signal transduction in response to pheromone detection, we speculate that the V1R genes have evolved under positive Darwinian selection to maintain the ability to discriminate between large and complex pheromonal mixtures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two multigene superfamilies, named V1R and V2R, encoding seven-transmembrane-domain G-protein coupled receptors (GPCRs) have been identified as pheromone receptors in mammals. Three V2R gene families have been described in mouse and rat. Here we screened

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pheromones are chemical cues released and sensed by individuals of the same species, which are of major importance in regulating reproductive and social behaviors of mammals. Generally, they are detected by the vomeronasal system (VNS). Here, we first investigated and compared an essential genetic component of vomeronasal chemoreception, that is, TRPC2 gene, of four marine mammals varying the degree of aquatic specialization and related terrestrial species in order to provide insights into the evolution of pheromonal olfaction in the mammalian transition from land to water. Our results based on sequence characterizations and evolutionary analyses, for the first time, show the evidence for the ancestral impairment of vomeronasal pheromone signal transduction pathway in fully aquatic cetaceans, supporting a reduced or absent dependence on olfaction as a result of the complete adaptation to the marine habitat, whereas the amphibious California sea lion was found to have a putatively functional TRPC2 gene, which is still under strong selective pressures, reflecting the reliance of terrestrial environment on chemical recognition among the semiadapted marine mammals. Interestingly, our study found that, unlike that of the California sea lion, TRPC2 genes of the harbor seal and the river otter, both of which are also semiaquatic, are pseudogenes. Our data suggest that other unknown selective pressures or sensory modalities might have promoted the independent absence of a functional VNS in these two species. In this respect, the evolution of pheromonal olfaction in marine mammals appears to be more complex and confusing than has been previously thought. Our study makes a useful contribution to the current understanding of the evolution of pheromone perception of mammals in response to selective pressures from an aquatic environment.