999 resultados para PH-meter


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boron isotopic and elemental systematics are used to define the vital effects for the temperate shallow water Mediterranean coral Cladocora caespitosa. The corals are from a range of seawater pH conditions (pHT ~ 7.6 to ~ 8.1) and environmental settings: (1) naturally living colonies harvested from normal pH waters offshore Levanto, (2) colonies transplanted nearby a subsea volcanic vent system, and (3) corals cultured in aquaria exposed to high (700 µatm) and near present day (400 µatm) pCO2 levels. B/Ca compositions measured using laser ablation inductively coupled mass spectrometry (LA-ICPMS) show that boron uptake by C. caespitosa cultured at different pCO2 levels is independent of ambient seawater pH being mainly controlled by temperature-dependent calcification. In contrast, the boron isotope compositions (delta11Bcarb) of the full suite of corals determined by positive thermal ionisation mass spectrometry (PTIMS) shows a clear trend of decreasing delta11Bcarb (from 26.7 to 22.2 %o) with decreasing seawater pH, reflecting the strong pH dependence of the boron isotope system. The delta11Bcarb compositions together with measurements of ambient seawater parameters enable calibration of the boron pH proxy for C. caespitosa, by using a new approach that defines the relationship between ambient seawater pH (pHsw) and the internally controlled pH at the site of calcification (pHbiol). C. caespitosa exhibits a linear relationship between pHsw and the shift in pH due to physiological processes (deltapH = pHbiol - pHsw) giving the regression deltapHClad = 4.80 - 0.52* pHsw for this species. We further apply this method ("deltapH-pHsw") to calibrate tropical species of Porites, Acropora, and Stylophora reported in the literature. The temperate and tropical species calibrations are all linearly correlated (r2 > 0.9) and the biological fractionation component (deltapH) between species varies within ~ 0.2 pH units. Our "deltapH-pHsw" approach provides a robust and accurate tool to reconstruct palaeoseawater pHsw for both temperate and tropical corals, further validating the boron fractionation factor (alphaB3-B4 = 1.0272) determined experimentally by Klochko et al. (2006) and the boron isotope pH proxy, both of which have been the foci of considerable debate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study examines sublethal effects of near-future (year 2100) ocean acidification (OA) on regenerative capacity, biochemical composition, and behavior of the sea star Luidia clathrata, a predominant predator in sub-tropical soft-bottom habitats. Two groups of sea stars, each with two arms excised, were maintained on a formulated diet in seawater bubbled with air alone (pH 8.2, approximating a pCO2 of 380 µatm) or with a controlled mixture of air/C02 (pH 7.8, approximating a pCO2 of 780 µatm). Arm length, total body wet weight, and righting responses were measured weekly. After 97 days, a period of time sufficient for 80% arm regeneration, pyloric caecal indices, and protein, carbohydrate, lipid, and ash levels were determined for body wall and pyloric caecal tissues of intact and regenerating arms of individuals held in both seawater pH treatments. The present study indicates that predicted near-term levels of ocean acidification (seawater pH 7.8) do not significantly impact whole animal growth, arm regeneration rates, biochemical composition, or righting behavior in this common soft bottom sea star.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impact of ocean acidification caused by the increasing atmospheric CO2 has been studied in marine calcifiers, including hermatypic corals. However, the effect of elevated pCO2 on the early developmental life-cycle stage of corals has been little studied. In this study, we reared polyps of Acropora digitifera in seawater at pHT 6.55, 7.31, 7.64, 7.77, and 8.03, controlled by CO2 bubbling. We measured the dry weights of polyp skeletons after the 40-d experiment to investigate the relationship between the seawater aragonite saturation state and polyp growth. In addition, we measured skeletal U/Ca ratio to estimate their pH dependence. Skeletal weights of coral polyps increased with the aragonite saturation state and reached an apparent saturation plateau above pH 7.77. U/Ca ratios had a strong inverse relationship with pH and a negligible relationship with skeletal growth rate (polyp weight), suggesting that skeletal U/Ca could be useful for reconstructing paleo-pH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the high-nutrient, low-chlorophyll waters of the Gulf of Alaska, microcosm manipulation experiments were used to assess the effect of CO2 on growth and primary production under iron-limited and iron-replete conditions. As expected, iron had a strong effect on growth and photosynthesis. A modest and variable stimulation of growth and biomass production by CO2 (high CO2: 77-122 Pa; low CO2: 11-17 Pa) was observed under both iron-replete and iron-limited conditions, though near the limit of precision of our measurements in slow-growing low-iron experiments. Physiological acclimations responsible for the changes in growth were assessed. Under iron-limited conditions, growth stimulation at high CO2 appeared to result from an increase in photosynthetic efficiency, which we attribute to energy savings from down-regulation of the carbon concentrating mechanisms. In some cases, iron-rich photosynthetic proteins (PsbA, PsaC, and cytochrome b6) were down-regulated at elevated CO2in iron-limited controls. Under iron-replete conditions, there was an increase in growth rate and biomass at high CO2 in some experiments. This increase was unexpectedly supported by reductions in cellular carbon loss, most likely decreased respiration. We speculate that this effect may be due to acclimation to decreased pH rather than high CO2. The variability in responses to CO2 among experiments did not appear to be caused by differences in phytoplankton community structure and may reflect the sensitivity of the net response of phytoplankton to antagonistic effects of the several parameters that co-vary with CO2.