995 resultados para PH SENSOR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents theories, analyses, and algorithms for detecting and estimating parameters of geospatial events with today's large, noisy sensor networks. A geospatial event is initiated by a significant change in the state of points in a region in a 3-D space over an interval of time. After the event is initiated it may change the state of points over larger regions and longer periods of time. Networked sensing is a typical approach for geospatial event detection. In contrast to traditional sensor networks comprised of a small number of high quality (and expensive) sensors, trends in personal computing devices and consumer electronics have made it possible to build large, dense networks at a low cost. The changes in sensor capability, network composition, and system constraints call for new models and algorithms suited to the opportunities and challenges of the new generation of sensor networks. This thesis offers a single unifying model and a Bayesian framework for analyzing different types of geospatial events in such noisy sensor networks. It presents algorithms and theories for estimating the speed and accuracy of detecting geospatial events as a function of parameters from both the underlying geospatial system and the sensor network. Furthermore, the thesis addresses network scalability issues by presenting rigorous scalable algorithms for data aggregation for detection. These studies provide insights to the design of networked sensing systems for detecting geospatial events. In addition to providing an overarching framework, this thesis presents theories and experimental results for two very different geospatial problems: detecting earthquakes and hazardous radiation. The general framework is applied to these specific problems, and predictions based on the theories are validated against measurements of systems in the laboratory and in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0×10-6-1.0×10-1 M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3 - 5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PVC based membranes of a double armed crown ether, N, N'-dibenzyl, 1,4,10,13-tetraoxa-7, 16-diaza cyclooctadecane (I) as ionophore with sodium tetra phenyl borate (NaTPB) as anion excluder and with many plasticizing solvent mediators have been prepared and used for Hg(II) ion determination. The membrane with DBBP (dibutyl butyl phosphonate ) as plasticizer with various ingredients in the ratio PVC: I: NaTPB: DBBP (150: 12: 2: 100) shows the best results in terms of working concentration range (3.1x10-5-1.0x10-tM) with a Nernstian slope (29.0′0.5 mV/decade of activity). The electrode works in the pH range 2.1-4.5. The response time of the sensor is 15s and it can be used for about 4 months in aqueous as well as in non-aqueous medium. It has good stability and reproducibility. The potentiometric selectivity coefficient values for mono-, di-, and trivalent cations are tabulated. The sensor is highly selective for Hg2+ in the presence of normal interferents like cadmium, silver, sodium and iron.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new fluorescent sensor for the sensitive and selective detection of cyanide (CN-) in aqueous media was developed herein. The sensing approach is based on CN--modulated quenching behavior of Cu2+ toward the photoluminescence (PL) of CdTe quantum dots (QDs). In the presence of CN-, the PL of QDs that have been quenched by Cu2+ was found to be efficiently recovered, which then allows the detection of CN- in a very simple approach. Experimental results showed that the pH of the buffer solution, concentration of copper ions, and size of CdTe QDs all influenced the response of the sensor to CN-. Under the optimal conditions, a good linear relationship between the PL intensity and the concentration of CN- can be obtained in the range of 3.0 x 10(-7) to 1.2 x 10(-5) M, with a detection limit as low as 1.5 x 10(-7) M. In addition, the present fluorescent sensor possesses remarkable selectivity for cyanide over other anions, and negligible influences were observed on the cyanide detection by the coexistence of other anions or biological species (such as albumin and typical blood constituents).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A surface-renewable tris (1,10-phenanthroline-5, 6-dione) iron (II) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD-modified electrode presented pH dependent voltammetric behavior, and its peak currents were diffusion-controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0. 4). In the, presence of iodate, clear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 x 10(-6)-1 x 10(-2) mol/L, 7.448 muA.L/mmol, 1.2 x 10(-6) mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface-renewal by simple mechanical polishing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conductive alpha (2)-K7P2W17VO62/graphite/organoceramic composite was prepared by dispersing alpha (2)-K7P2W17VO62 and graphite powder in a propyltrimethoxysilane-based sol-gel solution; it was used as the electrode material for an amperometric hydrogen peroxide sensor. The modified electrode had a homogeneous mirror-like surface and showed well defined cyclic voltammograms. Square-wave voltammetry was employed to study the pH-dependent electrochemical behavior of c alpha (2)-K7P2W17VO62 doped in the graphite organoceramic matrix, and the experiment showed that both protons and sodium cations participated in the odor process. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The sensor can be renewed easily in a repeatable manner by a mechanical polishing step and has a long operational lifetime. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of optical sensor technology for non-invasive determination of key quality pack parameters improved package/product quality. This technology can be used for optimization of packaging processes, improvement of product shelf-life and maintenance of quality. In recent years, there has been a major focus on O2 and CO2 sensor development as these are key gases used in modified atmosphere packaging (MAP) of food. The first and second experimental chapters (chapter 2 and 3) describe the development of O2, pH and CO2 solid state sensors and its (potential) use for food packaging applications. A dual-analyte sensor for dissolved O2 and pH with one bi-functional reporter dye (meso-substituted Pd- or Ptporphyrin) embedded in plasticized PVC membrane was developed in chapter 2. The developed CO2 sensor in chapter 3 was comprised of a phosphorescent reporter dye Pt(II)- tetrakis(pentafluorophenyl) porphyrin (PtTFPP) and a colourimetric pH indicator α-naphtholphthalein (NP) incorporated in a plastic matrix together with a phase transfer agent tetraoctyl- or cetyltrimethylammonium hydroxide (TOA-OH or CTA-OH). The third experimental chapter, chapter 4, described the development of liquid O2 sensors for rapid microbiological determination which are important for improvement and assurance of food safety systems. This automated screening assay produced characteristic profiles with a sharp increase in fluorescence above the baseline level at a certain threshold time (TT) which can be correlated with their initial microbial load and was applied to various raw fish and horticultural samples. Chapter 5, the fourth experimental chapter, reported upon the successful application of developed O2 and CO2 sensors for quality assessment of MAP mushrooms during storage for 7 days at 4°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Available methods for measuring the impact of ocean acidification (OA) and leakage from carbon capture and storage (CCS) on marine sedimentary pH profiles are unsuitable for replicated experimental setups. To overcome this issue, a novel optical sensor application is presented, using off-the-shelf optode technology (MOPP). The application is validated using microprofiling, during a CCS leakage experiment, where the impact and recovery from a high CO2 plume was investigated in two types of natural marine sediment. MOPP offered user-friendliness, speed of data acquisition, robustness to sediment type, and large sediment depth range. This ensemble of characteristics overcomes many of the challenges found with other pH measuring methods, in OA and CCS research. The impact varied greatly between sediment types, depending on baseline pH variability and sediment permeability. Sedimentary pH profile recovery was quick, with profiles close to control conditions 24 h after the cessation of the leak. However, variability of pH within the finer sediment was still apparent 4 days into the recovery phase. Habitat characteristics need therefore to be considered, to truly disentangle high CO2 perturbation impacts on benthic systems. Impacts on natural communities depend not only on the pH gradient caused by perturbation, but also on other processes that outlive the perturbation, adding complexity to recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, complexation, and photophysical properties of the Eu(III)-based quinoline cyclen conjugate complex Eu1 and its permanent, noncovalent incorporation into hydrogels as sensitive, interference-free pH sensing materials for biological media are described. The Eu(III) emission in both solution and hydrogel media was switched reversibly on-off as a function of pH with a large, greater than order of magnitude enhancement in Eu(III) emission. The irreversible incorporation of Eu1 into water-permeable hydrogels was achieved using poly[methyl methacrylate-co-2-hydroxyethyl methacrylate]- based hydrogels, and the luminescent properties of the novel sensor materials, using confocal laser- scanning microscopy and steady state luminescence, were characterized and demonstrated to be retained with respect to solution behavior. Water uptake and dehydration behavior of the sensor-incorporated materials was also characterized and shown to be dependent on the material composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 µM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (=3%) on the detection of either analyte. Nonimprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics. © 2009 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monitoring of oral disease is important, not alone for oral health, but for the detection and prevention of
systemic disease. The link between oral health and systemic disease is the focus of many studies, with
indications emerging of a causal link [1]. For disease diagnostics, blood has typically been the fluid of choice
for analysis, the retrieval of which is invasive and therefore unsuitable for wearable technology. Analysis of
saliva, however, is less invasive than that of blood, requires little or no pre-treatment and is abundantly
available. A strong correlation has been found between the analytes of blood and saliva [2] with saliva
containing biomarkers for diseases such as diabetes, oral cancer and cardiovascular disease. The development of
an implantable multi-parametric wireless sensor, to monitor both salivary analytes and changes in gingival
temperature, is the aim of this research project.
The aim of our current study is to detect changes in salivary pH, using a gold electrode with a pHsensitive
iridium oxide layer, and an Ion Sensitive Field Effect Transistor probe. Characterisation studies were
carried out in artificial saliva (AS). A salivary pH of between 4.5pH-7.5pH [3], and gingival temperature
between 35°C-38°C [4], were identified as the target range of interest for the human oral environment. Sensor
measurements were recorded in solutions of varying pH and temperature. An ISFET probe was then implanted
into a prototype denture and characterised in AS. This study demonstrates the suitability of ISFET and gold
electrode pH sensors for incorporation into implantable oral sensors.
[1] G. Taylor and W. Borgnakke, “Periodontal disease: associations with diabetes, glycemic control and
complications,” Oral Dis., vol. 14, no. 3, pp. 191–203, Apr. 2008.
[2] E. Tékus, M. Kaj, E. Szabó, N. L. Szénási, I. Kerepesi, M. Figler, R. Gábriel, and M. Wilhelm,
“Comparison of blood and saliva lactate level after maximum intensity exercise,” Acta Biol. Hung., vol. 63
Suppl 1, pp. 89–98, 2012.
[3] S. Naveen, M. L. Asha, G. Shubha, A. Bajoria, and A. Jose, “Salivary Flow Rate, pH and Buffering
Capacity in Pregnant and Non Pregnant Women - A Comparative Study,” JMED Res., pp. 1–8, Feb. 2014.
[4] A. F. Holthuis and F. S. Chebib, “Observations on temperature and temperature patterns of the gingiva. I.
The effect of arch, region and health,” J. Periodontol., vol. 54, no. 10, pp. 624–628, Oct. 1983

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N-(aminoalkyl)-4-chloronaphthalene-
1,8-dicarboximides 1, N-
(aminoalkyl)-4-acetamidonaphthalene-
1,8-dicarboximides 3 and N,N'-bis(aminoalkyl)-
perylene-3,4:9,10-tetracarboxydiimides
4 show good fluorescent off ±
on switching in aqueous alcoholic solution
with protons as required for fluorescent
PET sensor design. The excitation
wavelengths lie in the ultraviolet
(lmaxˆ345 and 351 nm) for 1 and 3 and
in the blue-green (lmaxˆ528, 492 and
461 nm) for 4; the emission wavelengths
lie in the violet (lmaxˆ408 nm) for 1, in
the blue (lmaxˆ474 nm) for 3 and in the
yellow-orange (lmaxˆ543 and 583 nm)
for 4. Compound 4b shows substantial
fluorescence enhancement with protons
when immobilized in a poly(vinylchloride)
matrix, provided that 2-nitrophenyloctyl
ether plasticizer and potassium
tetrakis(4-chlorophenyl)borate additive
are present to prevent dye crystallization
and to facilitate proton diffusion
into the membrane, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new macrocyclic-phthalimide ligands were synthesised via the coupling of N-(3-bromopropyl)phthalimide either to cyclen (1,4,7,10- tetraazacyclododecane) itself or its carboxylate-functionalized analogues, and photophysical studies were carried out on their corresponding Tb(iii) complexes in aqueous media as a function of pH. Luminescence intensities of Tb·L1a-Tb·L3a were in 'switched off' mode under acidic conditions (pH < 4), and were activated on progression to basic conditions as the phthalimido functions therein were hydrolysed to their corresponding phthalamates Tb·L1b-Tb·L3b. Emission of phthalamate-based macrocyclic Tb(iii) complexes Tb·L 1b-Tb·L3b was in 'switched on' mode between pH 4 and 11, exhibiting high quantum yields (Φ) and long lifetimes (τ) of the order of milliseconds at pH ∼ 6. Tb(iii) emissions were found to decline with increasing number of chromophores. The values of Φ and τ were 46% and 2.4 ms respectively for Tb·L1b at pH ∼ 6 when activated. This is the best pH-dependent sensor based on a Tb(iii) complex reported to date, benefiting from the macrocyclic architecture of the ligand. © 2013 The Royal Society of Chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.