214 resultados para PGE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) is a slow-releasing hydrogen sulfide (H2S) donor. Administration of GYY4137 (50 mg/kg, iv) to anesthetized rats 10 min after lipopolysaccharide (LPS; 4 mg/kg, iv) decreased the slowly developing hypotension. GYY4137 inhibited LPS-induced TNF-alpha production in rat blood and reduced the LPS-evoked rise in NF-kappa B;B activation, inducible nitric oxide synthase/cyclooxygenase-2 expression, and generation of PGE(2) and nitrate/nitrite in RAW 264.7 macrophages. GYY4137 (50 mg/kg, ip) administered to conscious rats 1 or 2 h after (but not 1 h before) LPS decreased the subsequent (4 h) rise in plasma proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6), nitrite/nitrate, C-reactive protein, and L-selectin. GYY4137 administration also decreased the LPS-evoked increase in lung myeloperoxidase activity, increased plasma concentration of the anti-inflammatory cytokine IL-10, and decreased tissue damage as determined histologically and by measurement of plasma creatinine and alanine aminotransferase activity. Tune-expired GYY4137 (50 mg/kg, ip) did not affect the LPS-induced rise in plasma TNF-alpha or lung myeloperoxidase activity. GYY4137 also decreased the LPS-mediated upregulation of liver transcription factors (NF-kappa B and STAT-3). These results suggest ail anti-inflammatory effect of GYY4137. The possibility that GYY4137 and other slow-releasing H2S donors exert anti-inflammatory activity in other models of inflammation and in humans warrants further study. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclooxygenase-2 (Cox-2) and Apo J/clusterin are involved in inflammatory resolution and have each been reported to inhibit NF-?B signalling. Using a well-validated rat pheochromocytoma (PC12) cell culture model of Cox-2 over-expression the current study investigated inter-dependence between Cox-2 and clusterin with respect to induction of expression and impact on NF-?B signalling. Both gene expression and immunoblot analysis confirmed that intracellular and secreted levels of clusterin were elevated in Cox-2 over-expressing cells (PCXII). Clusterin expression was increased in control (PCMT) cells in a time- and dose-dependent manner by 15-deoxy-? 12,14-prostaglandin J 2 (15d-PGJ 2), but not PGE 2, and inhibited in PCXII cells by pharmacological Cox inhibition. In PCXII cells, inhibition of two transcription factors known to be activated by 15d-PGJ 2, heat shock factor 1 (HSF-1) and peroxisome proliferator activated receptor (PPAR)?, by transcription factor oligonucleotide decoy and antagonist (GW9662) treatment, respectively, reduced clusterin expression. While PCXII cells exhibited reduced TNF-a-induced cell surface ICAM-1 expression, IkB phosphorylation and degradation were similar to control cells. With respect to the impact of Cox-2-dependent clusterin upregulation on NF-?B signalling, basal levels of I?B were similar in control and PCXII cells, and no evidence for a physical association between clusterin and phospho-I?B was obtained. Moreover, while PCXII cells exhibited reduced NF-?B transcriptional activity, this was not restored by clusterin knock-down. These results indicate that Cox-2 induces clusterin in a 15d-PGJ 2-dependent manner, and via activation of HSF-1 and PPAR?. However, the results do not support a model whereby Cox-2/15d-PGJ 2-dependent inhibition of NF-?B signalling involves clusterin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTEXT: The formation of primordial follicles occurs during fetal life yet is critical to the determination of adult female fertility. Prior to this stage, germ cells proliferate, enter meiosis, and associate with somatic cells. Growth and survival factors implicated in these processes include activin A (INHBA), the neurotrophins BDNF and NT4 (NTF5), and MCL1. The prostaglandins have pleiotrophic roles in reproduction, notably in ovulation and implantation, but there are no data regarding roles for prostaglandins in human fetal ovarian development.

OBJECTIVE: The aim of the study was to investigate a possible role for prostaglandin (PG) E(2) in human fetal ovary development.

DESIGN: In vitro analysis of ovarian development between 8 and 20 wk gestation was performed.

MAIN OUTCOME MEASURE(S): The expression patterns of PG synthesis enzymes and the PGE(2) receptors EP2 and EP4 in the ovary were assessed, and downstream effects of PGE(2) on gene expression were analyzed.

RESULTS: Ovarian germ cells express the PG synthetic enzymes COX2 and PTGES as well as the EP2 and EP4 receptors, whereas COX1 is expressed by ovarian somatic cells. Treatment in vitro with PGE(2) increased the expression of BDNF mRNA 1.7 +/- 0.16-fold (P = 0.004); INHBA mRNA, 2.1 +/- 0.51-fold (P = 0.04); and MCL1 mRNA, 1.15 +/- 0.06-fold (P = 0.04), but not that of OCT4, DAZL, VASA, NTF5, or SMAD3.

CONCLUSIONS: These data indicate novel roles for PGE(2) in the regulation of germ cell development in the human ovary and show that these effects may be mediated by the regulation of factors including BDNF, activin A, and MCL1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies oligopolistic competition in education markets when schools can be private and public and when the quality of education depends on ìpeer groupî e§ects. In the Örst stage of our game schools set their quality and in the second stage they Öx their tuition fees. We examine how the (subgame perfect Nash) equilibrium allocation (qualities, tuition fees and welfare) is a§ected by the presence of public schools and by their relative position in the quality range. When there are no peer group e§ects, e¢ ciency is achieved when (at least) all but one school are public. In particular in the two school case, the impact of a public school is spectacular as we go from a setting of extreme di§erentiation to an e¢ cient allocation. However, in the three school case, a single public school will lower welfare compared to the private equilibrium. We then introduce a peer group e§ect which, for any given school is determined by its student with the highest ability. These PGE do have a signiÖcant impact on the results. The mixed equilibrium is now never e¢ cient. However, welfare continues to be improved if all but one school are public. Overall, the presence of PGE reduces the e§ectiveness of public schools as regulatory tool in an otherwise private education sector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo tiene su fundamento epistemológico en las relaciones existentes entre las políticas fiscales como instrumento de gestión macroeconómica, el crecimiento económico sostenido y la estabilidad. Es significativo señalar que la teoría keynesiana tradicional afirma que, en el corto plazo, la política fiscal tiene un efecto positivo sobre el nivel de la actividad económica, a través del multiplicador de los gastos. Por tanto, el gasto público es considerado un instrumento exógeno de política económica, que genera cambios en el nivel agregado del PIB real en el corto plazo y sirve para corregir las fluctuaciones cíclicas de la economía. En el Ecuador, la relación de causalidad entre gasto público y el crecimiento económico es un tema poco consensuado, que requiere un debate académico más profundo y que puede derivar en importantes implicaciones de política económica. Por esta razón, es importante determinar si en el país la política fiscal posee o no efectos keynesianos, en relación a la producción de la economía. Como preámbulo al desarrollo de esta publicación, se presentará una breve descripción de lo que es el Presupuesto General del Estado (PGE) como herramienta contable y auxiliar. Luego se presentan las cuatro secciones en las que se encuentra dividida esta tesis. La primera, examina la política fiscal del gobierno central desde el punto de vista de los ingresos, describiendo su evolución y cuyo análisis determinará sus proyecciones. La segunda parte, se enfoca en los gastos, tratando de establecer cuál ha sido su estructura, sus modificaciones y aplicaciones para lograr los objetivos de gobierno. En la tercera sección se presentan algunas consideraciones finales. En la última se presentan los resultados y las conclusiones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Peroxynitrite (ONOO-) is formed in the inflamed and degenerating human joint. Peroxynitrite-modified collagen-II (PMC-II) was recently discovered in the serum of patients with osteoarthritis (OA) and rheumatoid arthritis (RA). Therefore we investigated the cellular effects of PMC-II on human mesenchymal progenitor cells (MPCs) as a model of cartilage and cartilage repair cells in the inflamed and degenerating joint. Design: MPCs were isolated from the trabecular bone of patients undergoing reconstructive surgery and were differentiated into a chondrogenic lineage. Cells were exposed to PMC-II and levels of the proinflammatory mediators nitric oxide (NO) and prostaglandin E-2 (PGE(2)) measured. Levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), phosphorylated mitogen activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kappa B) activation were measured by enzyme linked immunosorbent assay (ELISA) together with specific MAPK and NF-kappa B inhibitors. Results: PMC-II induced NO and PGE(2) synthesis through upregulation of iNOS and COX-2 proteins. PMC-II also lead to the phosphorylation of MAPKs, extracellularly regulated kinase 1/2 (ERK1/2) and p38 [but not c-Jun NH2-terminal kinase (JNK1/2)] and the activation of proinflammatory transcription factor NF-kappa B. Inhibitors of p38, ERK1/2 and NF-kappa B prevented PMC-II induced NO and PGE(2) synthesis, NOS and COX-2 protein expression and NF-kappa B activation. Conclusion: iNOS, COX-2, NF-KB and MAPK are known to be activated in the joints of patients with OA and RA. PMC-II induced iNOS and COX-2 synthesis through p38, ERK1/2 and NF-KB dependent pathways suggesting a previously unidentified pathway for the synthesis of the proinflammatory mediators, NO and PGE(2), further suggesting that inhibitors of these pathways may be therapeutic in the inflamed and degenerating human joint. (c) 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grassland ecosystems comprise a major portion of the earth’s terrestrial surface, ranging from high-input cultivated monocultures or simple species mixtures to relatively unmanaged but dynamic systems. Plant pathogens are a component of these systems with their impact dependent on many interacting factors, including grassland species population dynamics and community composition, the topics covered in this paper. Plant pathogens are affected by these interactions and also act reciprocally by modifying their nature. We review these features of disease in grasslands and then introduce the 150-year long-term Park Grass Experiment (PGE) at Rothamsted Research in the UK. We then consider in detail two plant-pathogen systems present in the PGE, Tragopogon pratensis-Puccinia hysterium and Holcus lanata-Puccinia coronata. These two systems have very different life history characteristics: the first, a biennial member of the Asteraceae infected by its host-specific, systemic rust; the second, a perennial grass infected by a host-non-specific rust. We illustrate how observational, experimental and modelling studies can contribute to a better understanding of population dynamics, competitive interactions and evolutionary outcomes. With Tragopogon pratensis-Puccinia hysterium, characterised as an “outbreak” species in the PGE, we show that pathogen-induced mortality is unlikely to be involved in host population regulation; and that the presence of even a short-lived seed-bank can affect the qualitative outcomes of the host-pathogen dynamics. With Holcus lanata-Puccinia coronata, we show how nutrient conditions can affect adaptation in terms of host defence mechanisms, and that co-existence of competing species affected by a common generalist pathogen is unlikely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostaglandins (PG) are known to induce pain perception indirectly by sensitizing nociceptors. Accordingly, the analgesic action of nonsteroidal anti-inflammatory drugs (NSAIDs) results from inhibition of cyclooxygenases and blockade of PG biosynthesis. Cyclopentenone PGs, 15-d-PGJ(2), PGA(2), and PGA(1), formed by dehydration of their respective parent PGs, PGD(2), PGE(2), and PGE(1), possess a highly reactive alpha,beta-unsaturated carbonyl group that has been proposed to gate the irritant transient receptor potential A1 (TRPA1) channel. Here, by using TRPA1 wild-type (TRPA1(+/+)) or deficient (TRPA1(-/-)) mice, we show that cyclopentenone PGs produce pain by direct stimulation of nociceptors via TRPA1 activation. Cyclopentenone PGs caused a robust calcium response in dorsal root ganglion (DRG) neurons of TRPA1(+/+), but not of TRPA1(-/-) mice, and a calcium-dependent release of sensory neuropeptides from the rat dorsal spinal cord. Intraplantar injection of cyclopentenone PGs stimulated c-fos expression in spinal neurons of the dorsal horn and evoked an instantaneous, robust, and transient nociceptive response in TRPA1(+/+) but not in TRPA1(-/-) mice. The classical proalgesic PG, PGE(2), caused a slight calcium response in DRG neurons, increased c-fos expression in spinal neurons, and induced a delayed and sustained nociceptive response in both TRPA1(+/+) and TRPA1(-/-) mice. These results expand the mechanism of NSAID analgesia from blockade of indirect nociceptor sensitization by classical PGs to inhibition of direct TRPA1-dependent nociceptor activation by cyclopentenone PGs. Thus, TRPA1 antagonism may contribute to suppress pain evoked by PG metabolites without the adverse effects of inhibiting cyclooxygenases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonsteroidal antiinflammatory drugs (NSAIDs) have been shown to reduce cell growth in several tumors. Among these possible antineoplastic drugs are cyclooxygenase-2 (COX-2)-selective drugs, such as celecoxib, in which antitumoral mechanisms were evaluated in rats bearing Walker-256 (W256) tumor. W256 carcinosarcoma cells were inoculated subcutaneously (10(7) cells/rat) in rats submitted to treatment with celecoxib (25 mg kg(-1)) or vehicle for 14 days. Tumor growth, body-weight gain, and survival data were evaluated. The mechanisms, such as COX-2 expression and activity, oxidative stress, by means of enzymes and lipoperoxidation levels, and apoptosis mediators were also investigated. A reduction in tumor growth and an increased weight gain were observed. Celecoxib provided a higher incidence of survival compared with the control group. Cellular effects are probably COX-2 independent, because neither enzyme expression nor its activity, measured by tumoral PGE(2), showed significant difference between groups. It is probable that this antitumor action is dependent on an apoptotic way, which has been evaluated by the expression of the antiapoptotic protein Bcl-xL, in addition to the cellular changes observed by electronic microscopy. Celecoxib has also a possible involvement with redox homeostasis, because its administration caused significant changes in the activity of oxidative enzymes, such as catalase and superoxide dismutase. These results confirm the antitumor effects of celecoxib in W256 cancer model, contributing to elucidating its antitumoral mechanism and corroborating scientific literature about its effect on other types of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of septic shock is a common and frequently lethal consequence of gram-negative infection. Mediators released by lung macrophages activated by bacterial products such as lipopolysaccharide (LPS) contribute to shock symptoms. We have shown that insulin downregulates LPS-induced TNF production by alveolar macrophages (AMs). In the present study, we investigated the effect of insulin on the LPS-induced production of nitric oxide (NO) and prostaglandin (PG)-E(2), on the expression of inducible nitric oxide synthase ( iNOS) and cyclooxygenase (COX)-2, and on nuclear factor kappa B (NF-kappa B) activation in AMs. Resident AMs from male Wistar rats were stimulated with LPS (100 ng/mL) for 30 minutes. Insulin (1 mU/mL) was added 10 min before LPS. Enzymes expression, NF-kappa B p65 activation and inhibitor of kappa B (I-kappa B) a phosphorylation were assessed by immunobloting; NO by Griess reaction and PGE(2) by enzyme immunoassay (EIA). LPS induced in AMs the expression of iNOS and COX-2 proteins and production of NO and PGE(2), and, in parallel, NF-kappa B p65 activation and cytoplasmic I-kappa B alpha phosphorylation. Administration of insulin before LPS suppressed the expression of iNOS and COX-2, of NO and PGE(2) production and Nuclear NF-kappa B p65 activation. Insulin also prevented cytoplasmic I-kappa Ba phosphorylation. These results show that in AMs stimulated by LPS, insulin prevents nuclear translocation of NF-kappa B, possibly by blocking I-kappa Ba degradation, and supresses the production of NO and PGE(2), two molecules that contribute to septic shock. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. The objective was to study the pulmonary inflammatory systemic response after renal IRI. Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- A 0.16 vs. 0.43 +/- A 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- A 15.63 vs. 18.1x10(4) +/- A 10.5, p < 0.05) 24 h (124 x 10(4) +/- A 8.94 vs. 23.2x10(4) +/- A 3.5, p < 0.05) and 48 h (79 x 10(4) +/- A 15.72 vs. 22.2 x 10(4) +/- A 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1 beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1 beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work explored the role of inhibition of cyclooxygenases (COXs) in modulating the inflammatory response triggered by acute kidney injury. C57Bl/6 mice were used. Animals were treated or not with indomethacin (IMT) prior to injury (days -1 and 0). Animals were subjected to 45 min of renal pedicle occlusion and sacrificed at 24 h after reperfusion. Serum creatinine and blood urea nitrogen, reactive oxygen species (ROS), kidney myeloperoxidase (MPO) activity, and prostaglandin E2 (PGE(2)) levels were analyzed. Tumor necrosis factor (TNF)-alpha, t-bet, interleukin (IL)-10, IL-1 beta, heme oxygenase (HO)-1, and prostaglandin E synthase (PGES) messenger RNA (mRNA) were studied. Cytokines were quantified in serum. IMT-treated animals presented better renal function with less acute tubular necrosis and reduced ROS and MPO production. Moreover, the treatment was associated with lower expression of TNF-alpha, PGE(2), PGES, and t-bet and upregulation of HO-1 and IL-10. This profile was mirrored in serum, where inhibition of COXs significantly decreased interferon (IFN)-gamma, TNF-alpha, and IL-12 p70 and upregulated IL-10. COXs seem to play an important role in renal ischemia and reperfusion injury, involving the secretion of pro-inflammatory cytokines, activation of neutrophils, and ROS production. Inhibition of COX pathway is intrinsically involved with cytoprotection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells (DCs), in peripheral tissues, derive mostly from blood precursors that differentiate into DCs under the influence of the local microenvironment. Monocytes constitute the main known DC precursors in blood and their infiltration into tissues is up-regulated during inflammation. During this process, the local production of mediators, like prostaglandins (PGs), influence significantly DC differentiation and function. In the present paper we show that treatment of blood adherent mononuclear cells with 10 mu M indomethacin, a dose achieved in human therapeutic settings, causes monocytes` progressive death but does not affect DCs viability or cell surface phenotype. This resistance of DCs was observed both for cells differentiated in vitro from blood monocytes and for a population with DCs characteristics already present in blood. This phenomenon could affect the local balance of antigen-presenting cells, influence the induction and pattern of immune responses developed under the treatment with non-steroidal anti-inflammatory drugs and, therefore, deserves further investigation. (C) 2009 Elsevier Inc. All rights reserved.