971 resultados para PEPTIDE-BASED VACCINES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

17 of 20 adult sera from the Amapa region of Brazil were active in the inhibition of P. falciparum sporozoite invasion (ISI) assay which has been correlated with protective antibodies. In contrast 11 sera were positive in IFA tests and 6 were positive in CSP tests. These results suggest that the ISI assay will be useful for evaluating naturally acquired protective anti-sporozoite antibodies in endemic areas, particularly during vaccine efficacy studies using sporozoite-based vaccines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUMO: O processo de glicosilação é a modificação pós-traducional de proteínas mais comum e está envolvido em vários processos fisiológicos e patológicos. Especificamente, certos perfis glicosídeos estão correlacionados a estados específicos de diferenciação celular, e podem modular vários eventos celulares, como sinalização celular, migração celular e interações hospedeiro-patogénio. Assim sendo, a glicosilação desempenha um papel crucial na modulação de vários processos imunológicos. No entanto, permanece por esclarecer como as estruturas glicosídicas influenciam a imunidade. Especificamente, algumas estruturas glicosídicas terminais que estão modificadas pela ligação de ácido siálico desempenham um papel importante em várias funções do sistema imune, nomeadamente migração leucocitária em contexto de inflamação e ativação de células imunes. Como tal, este trabalho teve como objectivo investigar como a expressão de certos glicanos influencia componentes importantes da resposta imune inata e adaptativa. Este trabalho está dividido em três componentes principais: 1) A imunidade está amplamente dependente da habilidade das células circulantes migrarem para os tecidos inflamados, sendo que a ligação de leucócitos à Eselectina endotelial é o primeiro passo. Assim, nós analisámos a estrutura e função dos ligandos de E-selectina que são expressos pelas células humanas mononucleares de sangue periférico (PBMCs), fornecendo novos conhecimentos para a compreensão dos intervenientes moleculares que mediam a ligação dos monócitos, células CD4+ e CD8+T e células B ao endotélio vascular. Surpreendentemente, os monócitos apresentaram maior capacidade de ligação à E-selectina comparativamente aos linfócitos. Esta observação pode ser explicada pelo facto de os monócitos humanos expressarem, uniformemente, um vasto reportório de glicoproteínas que exibem afinidade de ligação à E-selectina, nomeadamente: as glicoformas do CD43 (CD43E) e do CD44 (HCELL), em adição à já previamente reportada glicoforma da PSGL-1 (CLA). Consistentemente, a diferente capacidade que as diversas populações linfocitárias apresentam de se ligar à E-selectina, está integralmente relacionada com a sua expressão de glicoproteínas com afinidade de ligação à E-selectina. Enquanto que as células CD4+T apresentam uma elevada reatividade à E-selectina, as células CD8+T e B demonstram pouca ou nenhuma capacidade de ligação à E-selectina. Esta atividade de ligação à E-selectina das células CD4+T é conferida pela expressão de HCELL, em adição às já previamente reportadas CLA e CD43E. As células CD8+ T não expressam HCELL e apenas expressam pequenas quantidades de CLA e CD43E, enquanto que as células B não expressam ligandos de Eselectina. Mais, a exofucosilação da superfície destas células, levou ao dramático aumento da expressão dos ligandos de E-selectina em todos as populações leucocitárias, verificando-se que a criação de certos ligandos de E-selectina está dependente do tipo de célula, após fucosilação. Colectivamente, estes resultados redefinem o nosso conhecimento acerca dos mecanismos moleculares que governam o tráfico das células mononucleares de sangue periférico em contexto de inflamação. 2) A habilidade das células dendríticas (DCs) para extravasarem em locais de inflamação é crucial para o sucesso da terapia com DCs. Assim, analisámos a estrutura e função das moléculas de adesão que mediam a migração transendotelial (TEM) das DCs. Para isso, foram usadas DCs geradas a partir da diferenciação de monócitos (mo-DCS), obtidos quer pelo métodos de separação imuno-magnética de células CD14+ (CD14-S) ou por isolamento por aderência ao plástico (PA-S). Os resultados obtidos indicam que as glicoformas de ligação à Eselectina de PSGL-1, CD43 e CD44 são expressas pelas CD14-S mo-DCs, enquanto que as PA-S mo-DCs expressam apenas CLA. É importante notar que a ligação do CD44 nas mo-DCs, mas não nas PA-S mo-DCs, desencadeia a ativação e consequente adesão da VLA-4 ao endotélio na ausência de um gradiente de quimiocinas. Procedeu-se também à análise dos ligandos E-selectina expressos em mo-DCs geradas a partir de monócitos do sangue do cordão umbilical (UCB) e, inesperadamente, as UCB mo-DCs não expressam qualquer glicoproteína com reatividade à E-selectina. Além disso, a exofucosilação das mo- DCs humanas utilizando uma α(1,3)-fucosiltransferase aumenta significativamente a expressão de HCELL e, portanto, estas células apresentam uma capacidade aumentada para se ligarem à E-selectina em condições de fluxo hemodinâmico. Estes resultados destacam o papel do HCELL no desencadeamento do TEM das CD14-S mo-DCs e sugerem que estratégias para potenciar a expressão de HCELL poderão impulsionar o recrutamento de mo-DCs para locais de inflamação. 3) Outro obstáculo para alcançar o sucesso promissor de vacinas baseadas em DCs é o estabelecimento de abordagens eficientes que poderão melhorar o estado de maturação e apresentação antigénica das DCs. Por conseguinte, foram investigadas abordagens alternativas que podem superar este obstáculo. Através da remoção de ácido siálico de superfície celular das DCs, conseguiu-se induzir a maturação de DC humanas e de ratinhos. Notavelmente, tanto as DCs humanas como as de ratinho, ao serem desialiladas mostraram uma capacidade aumentada para induzir a proliferação de células T, para secretar citocinas Th1 e para induzir a morte específica de células tumorais. Em adição, as DCs desialiladas apresentam uma maior capacidade de apresentação cruzada de antigénios tumorais às células T citotóxicas. Colectivamente, o presente estudo oferece uma visão chave para optimizar a capacidade das DCs em induzir respostas imunitárias anti-tumorais, e indica que o tratamento com sialidase é uma nova tecnologia para melhorar a eficácia e aplicabilidade das vacinas baseadas em DCs. Coletivamente, os nossos resultados demostram como a glicosilação e a sua manipulação podem modular a imunidade. Concretamente, através de uma reação de exofucosilação conseguimos aumentar fortemente a capacidade de os leucócitos extravasarem para os tecidos afectados, enquanto que a remoção dos níveis de ácido siálico da superfície celular das DCs, induz potentes respostas anti-tumorais mediadas por células T citotóxicas. ------------------------------------ ABSTRACT: Glycosylation is the most widely form of protein post-translational modification and is involved in many physiological and pathological processes. Specifically, certain patterns of glycosylation are associated with determined stages of cell differentiation and can modulate processes like cell-signaling and migration and host-pathogen interactions. As such, glycosylation plays a crucial role in the modulation of several immune events. However, how glycans execute this immune-modulation and, therefore, influence immunity is still poorly unknown. Specifically, some terminal sialic acid-modified determinants are known to be involved in several physiological immune processes, including leukocyte trafficking into sites of inflammation and cell immune activation. Therefore, in this work, we sought to investigate more deeply how the expression of these glycosidic structures affects events form both innate and adaptive immune responses. To this end, we divided our work into three main parts: 1) Immunity critically depends on the ability of sentinel circulating cells to infiltrate injured sites, of which leukocyte binding to endothelial E-selectin is the critical first step. Thus, we first analyzed the structure and function of the E-selectin ligands expressed on native human peripheral blood mononuclear cells (PBMCs), providing novel insights into the molecular effectors governing adhesion of circulating monocytes, and of circulating CD4+T, CD8+T and B cells, to vascular endothelium under hemodynamic shear conditions. Strikingly, monocytes show a higher ability to tether and roll on endothelial cells than lymphocyte subsets. This is due to the fact that human circulating monocytes uniformly display a wide repertoire of E-selectin binding glycoproteins, namely the E-selectin-binding glycoforms of CD43 (CD43E) and CD44 (HCELL), in addition to the previously described E-selectin-binding glycoform of PSGL-1 (CLA). In addition, we also observed a differential ability of the different lymphocyte subsets to bind to Eselectin under hemodynamic shear stress conditions, and these differences were highly correlated with their individual expression of E-selectin binding glycoproteins. While CD4+T cells show a robust E-selectin binding ability, CD8+T and B cells show little to no E-selectin reactivity. CD4+T cell potent Eselectin rolling activity is conferred by HCELL expression, in addition to the previously reported E-selectin-binding glycoproteins CD43E and CLA. CD8+T cells display no HCELL and low amounts of CLA and CD43E, whereas B cells lack E-selectin ligand expression. Moreover, enforced exofucosylation of cell surface of these cells noticeably increases expression of functional E-selectin ligands among all leukocytes subsets, with cell type-dependent specificity in the protein scaffolds that are modified. Taken together, these findings redefine our understanding of the molecular mechanisms governing the trafficking patterns of PBMCs that are relevant in the context of acute or chronic inflammatory conditions. 2) The ability of circulating dendritic cells (DCs) to extravasate at inflammatory sites is critical to the success of DC-based therapies. Therefore, we assessed the structure and function of adhesion molecules mediating the transendothelial migration (TEM) of human monocyte derived-DCs (mo-DCs), obtained either by CD14 positive immune-magnetic selection (CD14-S) or by plastic adherence of blood monocytes (PA-S). We report for the first time that the E-selectin binding glycoforms of PSGL-1, CD43 and CD44 are all expressed on CD14-S mo-DCs, in contrast to PA-S mo-DCs that express only CLA. Importantly, CD44 engagement on CD14-S mo-DCs, but not on PA-S mo-DCs, triggers VLA-4-dependent adhesiveness and programs TEM in absence of chemokine gradient. We also analyzed the E-selectin ligands expressed on mo-DCs generated from umbilical cord blood (UCB) monocytes, and unexpectedly, UCB mo-DCs do not express any glycoprotein with E-selectin reactivity. Furthermore, exoglycosylation of human mo-DCs using an α(1,3)-fucosyltransferase significantly increases expression of HCELL, and therefore exofucosylated mo-DCs exhibit an augmented ability to bind to E-selectin under hemodynamic shear stress conditions. These findings highlight a role for HCELL engagement in priming TEM of CD14-S mo-DCs, and suggest that strategies to enforce HCELL expression could boost mo-DC recruitment to inflammatory sites. 3) Another obstacle to achieve the promising success of DC-based vaccines is the establishment of efficient approaches that could successfully enhance maturation and cross-presentation ability of DCs. Therefore, we investigated an alternative approach that can overcome this problem. Through removal of sialic acid content from DC cell surface we are able to elicit maturation of both human and mouse DCs. Notably, desialylated human and murine DCs showed enhanced ability to induce autologous T cell to proliferate, to secrete Th1 cytokines and to kill tumor cells. Moreover, desialylated DCs display enhanced cross-presentation of tumor antigens to cytotoxic CD8+ T cells. Collectively, this study offers key insight to optimize the ability of DCs to boost anti-tumor immune responses, and indicates that the treatment with an exogenous sialidase is a powerful new technology to improve the efficacy and applicability of DC-based vaccines. Overall, our findings show how glycosylation and its manipulation can modulate immunity. Concretely, through an exofucosylation reaction we are able to greatly augment the ability of leukocytes to extravasate into injured tissues, while removal of sialic acid moieties from cell surface of DCs, significantly potentiate their ability to induce anti-tumor cytotoxic T cell-mediate responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RESUMO:O processo de glicosilação é a modificação pós-traducional de proteínas mais comum e está envolvido em vários processos fisiológicos e patológicos. Especificamente, certos perfis glicosídeos estão correlacionados a estados específicos de diferenciação celular, e podem modular vários eventos celulares, como sinalização celular, migração celular e interações hospedeiro-patogénio. Assim sendo, a glicosilação desempenha um papel crucial na modulação de vários processos imunológicos. No entanto, permanece por esclarecer como as estruturas glicosídicas influenciam a imunidade. Especificamente, algumas estruturas glicosídicas terminais que estão modificadas pela ligação de ácido siálico desempenham um papel importante em várias funções do sistema imune, nomeadamente migração leucocitária em contexto de inflamação e ativação de células imunes. Como tal, este trabalho teve como objectivo investigar como a expressão de certos glicanos influencia componentes importantes da resposta imune inata e adaptativa. Este trabalho está dividido em três componentes principais: 1) A imunidade está amplamente dependente da habilidade das células circulantes migrarem para os tecidos inflamados, sendo que a ligação de leucócitos à Eselectina endotelial é o primeiro passo. Assim, nós analisámos a estrutura e função dos ligandos de E-selectina que são expressos pelas células humanas mononucleares de sangue periférico (PBMCs), fornecendo novos conhecimentos para a compreensão dos intervenientes moleculares que mediam a ligação dos monócitos, células CD4+ e CD8+T e células B ao endotélio vascular. Surpreendentemente, os monócitos apresentaram maior capacidade de ligação à E-selectina comparativamente aos linfócitos. Esta observação pode ser explicada pelo facto de os monócitos humanos expressarem, uniformemente, um vasto reportório de glicoproteínas que exibem afinidade de ligação à E-selectina, nomeadamente: as glicoformas do CD43 (CD43E) e do CD44 (HCELL), em adição à já previamente reportada glicoforma da PSGL-1 (CLA). Consistentemente, a diferente capacidade que as diversas populações linfocitárias apresentam de se ligar à E-selectina, está integralmente relacionada com a sua expressão de glicoproteínas com afinidade de ligação à E-selectina. Enquanto que as células CD4+T apresentam uma elevada reatividade à E-selectina, as células CD8+T e B demonstram pouca ou nenhuma capacidade de ligação à E-selectina. Esta atividade de ligação à E-selectina das células CD4+T é conferida pela expressão de HCELL, em adição às já previamente reportadas CLA e CD43E. As células CD8+ T não expressam HCELL e apenas expressam pequenas quantidades de CLA e CD43E, enquanto que as células B não expressam ligandos de Eselectina. Mais, a exofucosilação da superfície destas células, levou ao dramático aumento da expressão dos ligandos de E-selectina em todos as populações leucocitárias, verificando-se que a criação de certos ligandos de E-selectina está dependente do tipo de célula, após fucosilação. Colectivamente, estes resultados redefinem o nosso conhecimento acerca dos mecanismos moleculares que governam o tráfico das células mononucleares de sangue periférico em contexto de inflamação. 2) A habilidade das células dendríticas (DCs) para extravasarem em locais de inflamação é crucial para o sucesso da terapia com DCs. Assim, analisámos a estrutura e função das moléculas de adesão que mediam a migração transendotelial (TEM) das DCs. Para isso, foram usadas DCs geradas a partir da diferenciação de monócitos (mo-DCS), obtidos quer pelo métodos de separação imuno-magnética de células CD14+ (CD14-S) ou por isolamento por aderência ao plástico (PA-S). Os resultados obtidos indicam que as glicoformas de ligação à Eselectina de PSGL-1, CD43 e CD44 são expressas pelas CD14-S mo-DCs, enquanto que as PA-S mo-DCs expressam apenas CLA. É importante notar que a ligação do CD44 nas mo-DCs, mas não nas PA-S mo-DCs, desencadeia a ativação e consequente adesão da VLA-4 ao endotélio na ausência de um gradiente de quimiocinas. Procedeu-se também à análise dos ligandos E-selectina expressos em mo-DCs geradas a partir de monócitos do sangue do cordão umbilical (UCB) e, inesperadamente, as UCB mo-DCs não expressam qualquer glicoproteína com reatividade à E-selectina. Além disso, a exofucosilação das mo- DCs humanas utilizando uma α(1,3)-fucosiltransferase aumenta significativamente a expressão de HCELL e, portanto, estas células apresentam uma capacidade aumentada para se ligarem à E-selectina em condições de fluxo hemodinâmico. Estes resultados destacam o papel do HCELL no desencadeamento do TEM das CD14-S mo-DCs e sugerem que estratégias para potenciar a expressão de HCELL poderão impulsionar o recrutamento de mo-DCs para locais de inflamação. 3) Outro obstáculo para alcançar o sucesso promissor de vacinas baseadas em DCs é o estabelecimento de abordagens eficientes que poderão melhorar o estado de maturação e apresentação antigénica das DCs. Por conseguinte, foram investigadas abordagens alternativas que podem superar este obstáculo. Através da remoção de ácido siálico de superfície celular das DCs, conseguiu-se induzir a maturação de DC humanas e de ratinhos. Notavelmente, tanto as DCs humanas como as de ratinho, ao serem desialiladas mostraram uma capacidade aumentada para induzir a proliferação de células T, para secretar citocinas Th1 e para induzir a morte específica de células tumorais. Em adição, as DCs desialiladas apresentam uma maior capacidade de apresentação cruzada de antigénios tumorais às células T citotóxicas. Colectivamente, o presente estudo oferece uma visão chave para optimizar a capacidade das DCs em induzir respostas imunitárias anti-tumorais, e indica que o tratamento com sialidase é uma nova tecnologia para melhorar a eficácia e aplicabilidade das vacinas baseadas em DCs. Coletivamente, os nossos resultados demostram como a glicosilação e a sua manipulação podem modular a imunidade. Concretamente, através de uma reação de exofucosilação conseguimos aumentar fortemente a capacidade de os leucócitos extravasarem para os tecidos afectados, enquanto que a remoção dos níveis de ácido siálico da superfície celular das DCs, induz potentes respostas anti-tumorais mediadas por células T citotóxicas. ---------------------------- ABSTRACT: Glycosylation is the most widely form of protein post-translational modification and is involved in many physiological and pathological processes. Specifically, certain patterns of glycosylation are associated with determined stages of cell differentiation and can modulate processes like cell-signaling and migration and host-pathogen interactions. As such, glycosylation plays a crucial role in the modulation of several immune events. However, how glycans execute this immune-modulation and, therefore, influence immunity is still poorly unknown. Specifically, some terminal sialic acid-modified determinants are known to be involved in several physiological immune processes, including leukocyte trafficking into sites of inflammation and cell immune activation. Therefore, in this work, we sought to investigate more deeply how the expression of these glycosidic structures affects events form both innate and adaptive immune responses. To this end, we divided our work into three main parts: 1) Immunity critically depends on the ability of sentinel circulating cells to infiltrate injured sites, of which leukocyte binding to endothelial E-selectin is the critical first step. Thus, we first analyzed the structure and function of the E-selectin ligands expressed on native human peripheral blood mononuclear cells (PBMCs), providing novel insights into the molecular effectors governing adhesion of circulating monocytes, and of circulating CD4+T, CD8+T and B cells, to vascular endothelium under hemodynamic shear conditions. Strikingly, monocytes show a higher ability to tether and roll on endothelial cells than lymphocyte subsets. This is due to the fact that human circulating monocytes uniformly display a wide repertoire of E-selectin binding glycoproteins, namely the E-selectin-binding glycoforms of CD43 (CD43E) and CD44 (HCELL), in addition to the previously described E-selectin-binding glycoform of PSGL-1 (CLA). In addition, we also observed a differential ability of the different lymphocyte subsets to bind to Eselectin under hemodynamic shear stress conditions, and these differences were highly correlated with their individual expression of E-selectin binding glycoproteins. While CD4+T cells show a robust E-selectin binding ability, CD8+T and B cells show little to no E-selectin reactivity. CD4+T cell potent Eselectin rolling activity is conferred by HCELL expression, in addition to the previously reported E-selectin-binding glycoproteins CD43E and CLA. CD8+T cells display no HCELL and low amounts of CLA and CD43E, whereas B cells lack E-selectin ligand expression. Moreover, enforced exofucosylation of cell surface of these cells noticeably increases expression of functional E-selectin ligands among all leukocytes subsets, with cell type-dependent specificity in the protein scaffolds that are modified. Taken together, these findings redefine our understanding of the molecular mechanisms governing the trafficking patterns of PBMCs that are relevant in the context of acute or chronic inflammatory conditions. 2) The ability of circulating dendritic cells (DCs) to extravasate at inflammatory sites is critical to the success of DC-based therapies. Therefore, we assessed the structure and function of adhesion molecules mediating the transendothelial migration (TEM) of human monocyte derived-DCs (mo-DCs), obtained either by CD14 positive immune-magnetic selection (CD14-S) or by plastic adherence of blood monocytes (PA-S). We report for the first time that the E-selectin binding glycoforms of PSGL-1, CD43 and CD44 are all expressed on CD14-S mo-DCs, in contrast to PA-S mo-DCs that express only CLA. Importantly, CD44 engagement on CD14-S mo-DCs, but not on PA-S mo-DCs, triggers VLA-4-dependent adhesiveness and programs TEM in absence of chemokine gradient. We also analyzed the E-selectin ligands expressed on mo-DCs generated from umbilical cord blood (UCB) monocytes, and unexpectedly, UCB mo-DCs do not express any glycoprotein with E-selectin reactivity. Furthermore, exoglycosylation of human mo-DCs using an α(1,3)-fucosyltransferase significantly increases expression of HCELL, and therefore exofucosylated mo-DCs exhibit an augmented ability to bind to E-selectin under hemodynamic shear stress conditions. These findings highlight a role for HCELL engagement in priming TEM of CD14-S mo-DCs, and suggest that strategies to enforce HCELL expression could boost mo-DC recruitment to inflammatory sites.3) Another obstacle to achieve the promising success of DC-based vaccines is the establishment of efficient approaches that could successfully enhance maturation and cross-presentation ability of DCs. Therefore, we investigated an alternative approach that can overcome this problem. Through removal of sialic acid content from DC cell surface we are able to elicit maturation of both human and mouse DCs. Notably, desialylated human and murine DCs showed enhanced ability to induce autologous T cell to proliferate, to secrete Th1 cytokines and to kill tumor cells. Moreover, desialylated DCs display enhanced cross-presentation of tumor antigens to cytotoxic CD8+ T cells. Collectively, this study offers key insight to optimize the ability of DCs to boost anti-tumor immune responses, and indicates that the treatment with an exogenous sialidase is a powerful new technology to improve the efficacy and applicability of DC-based vaccines. Overall, our findings show how glycosylation and its manipulation can modulate immunity. Concretely, through an exofucosylation reaction we are able to greatly augment the ability of leukocytes to extravasate into injured tissues, while removal of sialic acid moieties from cell surface of DCs, significantly potentiate their ability to induce anti-tumor cytotoxic T cell-mediate responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extracellular matrix (ECM) of tissues is an assembly of insoluble macromolecules that specifically interact with soluble bioactive molecules and regulate their distribution and availability to cells. Recapitulating this ability has been an important target in controlled growth factor delivery strategies for tissue regeneration and requires the design of multifunctional carriers. This review describes the integration of supramolecular interactions on the design of delivery strategies that encompass self-assembling and engineered affinity components to construct advanced biomimetic carriers for growth factor delivery. Several glycan- and peptide-based self-assemblies reported in the literature are highlighted and commented upon. These examples demonstrate how molecular design and chemistry are successfully employed to create versatile multifunctional molecules which self-assemble/disassemble in a precisely predicted manner, thus controlling compartmentalization, transport and delivery. Finally, we discuss whether recent advances in the design and preparation of supramolecular delivery systems have been sufficient to drive real translation towards a clinical impact. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last years, dendritic cells (DC) have been evaluated for antitumor vaccination. Although DC-based vaccines have raised great expectations, their clinical translation has been largely disappointing. For these results, several explanations have been proposed. In particular, the concomitant expression by DCs of tolerogenic pathways, such as the immunosuppressive agent indoleamine 2,3-dioxygenase-1 (IDO1), has been demonstrated. The aim of this study is to evaluate both the stimulatory and the tolerogenic feature of monocyte-derived DCs (Mo-DCs) after maturation with PGE2. In particular, the role of IDO1 expression in PGE2-matured Mo-DCs has been addressed. Here we show that PGE2, which is required for full maturation of DCs, is one mediator of DC tolerance by enhancing IDO1. PGE2-mediated expression of IDO1 results in the production of kynurenine, in the generation of Tregs, and in the inhibition of either the allogeneic or the autologous antigen-specific stimulatory capacity of DCs. When pulsed with leukemic lysates and matured with PGE2, DCs are impaired in the induction of IFN-γ secreting CD4(+) and CD8(+) T cells due to IDO1 upregulation. Moreover, the inhibition of IDO1 enhances the antileukemic response. Overall, these results point toward the use of IDO1 inhibitors to enhance the vaccination capacity of DCs, matured with PGE2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of additional methods for detecting and identifuing Babesia and Plasmodium infections may be useful in disease monitoring, management and control efforts. To preliminarily evaluate sunthetic peptide-based serodiagnosis, a hydrophilic sequence (DDESEFDKEK)was selected from published BabR gene of B. bovis. Immunization of rabbits and cattle with the hemocyanin-conjugated peptide elicited antibody responses that specifically detected both P. falciparum and B. bovis antigens by immunofluorescence and Western blots. Using a dot-ELISA with this peptide, antisera from immunized and naturally-infected cattle, and immunized rodents, were specifically detected. Reactivity was weak and correlated with peptide immunization or infection. DNA-based detection using repetitive DNA was species-specific in dot-blot formats for B. bovis DNA, and in both dot-blot and in situ formats for P. falciparum; a streamlined enzymelinked synthetic DNA assay for P. falciparum detected 30 parasites/mm(cúbicos) from patient blood using either colorimetric (2-15 h color development) or chemiluminescent detection (0.5-6-min. exposures). Serodiagnostic and DNA hybridization methods may be complementary in the respective detection of both chronic and acute infections. However, recent improvements in the polymerase chain reaction (PCR) make feasible a more sensitive and uniform approach to the diagnosis of these and other infectious disease complexes, with appropriate primers and processing methods. An analysis of ribosomal DNA genes of Plasmodium and Toxoplasma identified Apicomplexa-conserved sequence regions. Specific and distinctive PCR profiles were obtained for primers spanning the internal transcribed spacer locus for each of several Plasmodium and Babesia species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the 1990's, cheating athletes have abused substances to increase their oxygen transport capabilities; among these substances, recombinant EPO is the most well known. Currently, other investigational pharmaceutical products are able to produce an effect similar to EPO but without having chemical structures related to EPO; these are the synthetic erythropoiesis stimulating agents (ESAs). Peginesatide (also known as Hematide?) is being developed by Affymax and Takeda and, if approved by regulatory authorities, could soon be released on the international market. To detect potential athletic abuse of this product and deter athletes who consider cheating, we initiated a collaboration to implement a detection test for anti-doping purposes. Peginesatide is a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent that is designed and engineered to stimulate specifically the erythropoietin receptor dimer that governs erythropoiesis. It is undetectable using current anti-doping tests due to its lack of sequence homology to EPO. To detect and deter potential abuse of peginesatide, we initiated an industry/antidoping laboratory collaboration to develop and validate screening and confirmation assays so that they would be available before peginesatide reaches the market. We describe a screening ELISA and a confirmation assay consisting of immune-purification followed by separation with SDS-PAGE and revelation with Western double blotting. Both assays can detect 0.5 ng/mL concentrations of peginesatide in blood samples, enabling detection for several days after administration of a physiologically relevant dose. This initial report describes experimental characterization of these assays, including testing with a blinded set of samples from a clinical study conducted in healthy volunteers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Vacc-4x is a peptide-based HIV therapeutic vaccine to conserved domains on p24Gag. Recently conserved 'sectors' on HIV p24, critical for virus viability and thereby immunologically vulnerable have been identified. Elite controllers target immune responses to such regions. The Vacc-4x peptides lie within a number of these conserved sectors of HIV p24. The co-primary endpoints of this study were to compare changes in CD4 counts and return to ART between treatmentand placebo groups during a 24 week treatment interruption. Secondary endpoints included safety, viral load and immunogenicity.Methods: This prospective, randomized, double blind phase IIB clinical study (NCT00659789) was carried out in 13 European and 5 US centers recruiting 135 patients on ART. After 6 immunizations on ART over 28 weeks, treatment was interrupted for up to 24 weeks (to week 52) (Vacc-4x n = 88; placebo n = 38). Immunological analyses (ELISPOT, proliferation, intracellular cytokine staining) were carried out at central laboratories.Results: There were no Vacc-4x-related serious adverse events. Of the 135 patients recruited (male n = 92; female n = 43), 126 patients completed the study. Median prestudy CD4 count was 712 (Vacc-4x) and 619 cells/mm3 (placebo), and median CD4 nadir 300 (Vacc-4x) and 285 cells/mm3 (placebo). There was no statistically significant difference between the two groups regarding change in CD4 counts (p = 0.12) or ART resumption (p = 0.89) during treatment interruption. A statistically significant treatment difference between Vacc-4x and placebo groupsfor viral load (VL) was found for patients who achieved a 6 month ART-free period (p = 0.0022). There was a positive correlation between ELISPOT responses and lower viral load in the Vacc-4x group compared to placebo (p = 0.02). Long-term follow-up of patients up t o week 104 was completed in June 2011.Conclusion: Vacc-4x was found to be safe and well tolerated. TheVacc-4x group experienced a significant reduction in viral load compared to placebo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The developments in enteral feeding for Crohn's disease in the past decade are critically reviewed. The advent of amino acid based chemically defined elemental diets signalled the end of 'total bowel rest' in the management of these patients. Subsequently, controlled clinical trials showed that elemental diets were as effective as corticosteroids in inducing clinical remission in patients with acute exacerbations of Crohn's disease. The later use of peptide based elemental diets, in Crohn's disease produced somewhat conflicting results. The initial uncontrolled studies suggest that polymeric whole protein diets might also be effective in the management of acute exacerbations of the disease, casting in turn doubts concerning the role of dietary antigens in the pathogenesis of Crohn's disease. Results of controlled studies comparing the use of elemental and polymeric diets as primary therapy in Crohn's disease have, however, also produced conflicting results. The results of one recent controlled trial in which

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tumor environment is critical for tumor maintenance and progression. Integrins are a large family of cell surface receptors mediating the interaction of tumor cells with their microenvironment and play important roles in glioma biology, including migration, invasion, angiogenesis and tumor stem cell anchorage. Here, we review preclinical and clinical data on integrin inhibition in malignant gliomas. Various pharmacological approaches to the modulation of integrin signaling have been explored including antibodies and peptide-based agents. Cilengitide, a cyclic RGD-mimetic peptide of αvβ3 and αvβ5 integrins is in advanced clinical development in glioblastoma. Cilengitide had only limited activity as a single agent in glioblastoma, but, when added to standard radiochemotherapy, appeared to prolong progression-free and overall survival in patients with newly diagnosed glioblastomas and methylation of the promoter of the O⁶ methylguanine methyltransferase (MGMT) gene. MGMT gene promoter methylation in turn predicts benefit from alkylating chemotherapy. A phase III randomized clinical trial in conjunction with standard radiochemotherapy in newly diagnosed glioblastoma patients with MGMT gene promoter methylation has recently completed accrual (EORTC 26071-22072). A companion trial explores a dose-escalated regimen of cilengitide added to radiotherapy plus temozolomide in patients without MGMT gene promoter methylation. Promising results in these trials would probably result in a broader interest in integrins as targets for glioma therapy and hopefully the development of a broader panel of anti-integrin agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large numbers and functionally competent T cells are required to protect from diseases for which antibody-based vaccines have consistently failed (1), which is the case for many chronic viral infections and solid tumors. Therefore, therapeutic vaccines aim at the induction of strong antigen-specific T-cell responses. Novel adjuvants have considerably improved the capacity of synthetic vaccines to activate T cells, but more research is necessary to identify optimal compositions of potent vaccine formulations. Consequently, there is a great need to develop accurate methods for the efficient identification of antigen-specific T cells and the assessment of their functional characteristics directly ex vivo. In this regard, hundreds of clinical vaccination trials have been implemented during the last 15 years, and monitoring techniques become more and more standardized.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A crucial step in the arenavirus life cycle is the biosynthesis of the viral envelope glycoprotein (GP) responsible for virus attachment and entry. Processing of the GP precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexin-isozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infection and production of infectious virus. Here, we sought to evaluate arenavirus GPC processing by S1P as a target for antiviral therapy using a recently developed peptide-based S1P inhibitor, decanoyl (dec)-RRLL-chloromethylketone (CMK), and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). To control for off-target effects of dec-RRLL-CMK, we employed arenavirus reverse genetics to introduce a furin recognition site into the GPC of LCMV. The rescued mutant virus grew to normal titers, and the processing of its GPC critically depended on cellular furin, but not S1P. Treatment with the S1P inhibitor dec-RRLL-CMK resulted in specific blocking of viral spread and virus production of LCMV. Combination of the protease inhibitor with ribavirin, currently used clinically for treatment of human arenavirus infections, resulted in additive drug effects. In cells deficient in S1P, the furin-dependent LCMV variant established persistent infection, whereas wild-type LCMV underwent extinction without the emergence of S1P-independent escape variants. Together, the potent antiviral activity of an inhibitor of S1P-dependent GPC cleavage, the additive antiviral effect with ribavirin, and the low probability of emergence of S1P-independent viral escape variants make S1P-mediated GPC processing by peptide-derived inhibitors a promising strategy for the development of novel antiarenaviral drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Toxin-antitoxin (TA) systems contribute to plasmid stability by a mechanism called post-segregational killing. The ccd was the first TA system to be discovered with CcdB being the toxin and CcdA the antitoxin. CcdA, an 8.3 kDa protein, interacts with CcdB (11.7 kDa), preventing the cytotoxic activity of CcdB on the DNA gyrase. As an approach to understanding this interaction, CcdA41, a polypeptide derived from CcdA, was synthesized by solid-phase methodology and its interaction with CcdB was analyzed by steady state fluorescence. CcdA41 formed a stable complex with CcdBET2, a peptide based on CcdB, the more recently described bacterial topoisomerase inhibitor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human papillomavirus (HPV) infection is the most common sexually transmitted disease in the world and is related to the etiology of cervical cancer. The most common high-risk HPV types are 16 and 18; however, the second most prevalent type in the Midwestern region of Brazil is HPV-33. New vaccine strategies against HPV have shown that virus-like particles (VLP) of the major capsid protein (L1) induce efficient production of antibodies, which confer protection against the same viral type. The methylotrophic yeast Pichia pastoris is an efficient and inexpensive expression system for the production of high levels of heterologous proteins stably using a wild-type gene in combination with an integrative vector. It was recently demonstrated that P. pastoris can produce the HPV-16 L1 protein by using an episomal vector associated with the optimized L1 gene. However, the use of an episomal vector is not appropriate for protein production on an industrial scale. In the present study, the vectors were integrated into the Pichia genome and the results were positive for L1 gene transcription and protein production, both intracellularly and in the extracellular environment. Despite the great potential for expression by the P. pastoris system, our results suggest a low yield of L1 recombinant protein, which, however, does not make this system unworkable. The achievement of stable clones containing the expression cassettes integrated in the genome may permit optimizations that could enable the establishment of a platform for the production of VLP-based vaccines.