914 resultados para PEO: PPO blend
Resumo:
By adding a small amount of multiwall carbon nanotubes (MWNTs) to polyethylene oxide (PEO) and a salt system, a new type of nanocomposite film was constructed. At ambient temperature, the conductivity of the PEO-salt-0.5 wt % MWNTs was nearly three orders of magnitude higher than that of the PEO-salt system. The conductive property of the nanocomposite film was characterized by ac impedance and the differential scanning calorimetry technique.
Resumo:
Binary symmetric diblock copolymer blends, that is, low-molecular-weight poly(styrene-block-methyl methacrylate) (PS-b-PMMA) and high-molecular-weight poly(styrene-block-methacrylate) (PS-b-PMA), self-assemble on silicon substrates to form structures with highly ordered nanoholes in thin films. As a result of the chemically similar structure of the PMA and the PMMA block, the PMMA chain penetrates through the large PMA block that absorbs preferentially on the polar silicon substrate. This results in the formation of nanoholes in the PS continuous matrix.
Resumo:
The effects of the molecular weight of polystyrene (PS) component on the phase separation of PS/poly(4-vinylpyridine) (PS/P4VP) blend films on homogeneous alkanethiol self-assembled monolayer (SAM) and heterogeneous SAM/Au substrates have been investigated by means of atomic force microscopy (AFM). For the PS (22.4k)/P4VP (60k) system, owing to the molecular weight of PS component is relatively small, the well-aligned PS and P4VP stripes with good thermal stability are directed by the patterned SAM/Au surfaces. With the increase of the molecular weight of PS component (for the PS (582k)/P4VP (60k) system), the diffusion of P4VP is hindered by the high viscosity of PS during the fast spin-coating process. The phase separation behavior of PS/P4VP on the SAM/Au patterned substrates is similar to that on the homoueneous SAM and cannot be easily directed by the patterned SAM surfaces even though the characteristic length of the lateral domain morphology is commensurate with the stripe width.
Resumo:
Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.
Resumo:
The surface morphology evolution of three thin polystyrene (PS)/polymethyl methacrylate (PMMA) blend films (<70 nm) on SiOx substrates upon annealing were investigated by atomic force microscopy (AFM) and some interesting phenomena were observed. All the spin-coated PS/PMMA blend films were not in thermodynamic equilibrium. For the 67.1 and the 27.2 nm PS/PMMA blend films, owing to the low mobility of the PMMA-rich phase layer at substrate surfaces and interfacial stabilization caused by long-range van der Waals forces of the substrates, the long-lived metastable surface morphologies (the foam-like and the bicontinuous morphologies) were first observed. For the two-dimensional ultrathin PS/PMMA blend film (16.3 nm), the discrete domains of the PS-rich phases upon the PMMA-rich phase layer formed and the secondary phase separation occurred after a longer annealing time.
Resumo:
We report the morphology and phase behaviors of blend thin films containing two poly styrene-b-poly (methyl methacrylate) (PS-b-PMMA) diblock copolymers with different blending compositions induced by a selective solvent for the PMMA block, which were studied by transmission electron microscopy (TEM). The neat asymmetric PS-b-PMMA diblock copolymers employed in this study, respectively coded as a(1) and a(2), have similar molecular weights but different volume fractions of PS block (f(PS) = 0.273 and 0.722). Another symmetric PS-b-PMMA diblock copolymer, coded as s, which has a PS block length similar to that of a(1), was also used. For the asymmetric a(1)/a(2) blend thin films, circular multilayered structures were formed. For the asymmetric a(1)/symmetric s blend thin films, inverted phases with PMMA as the dispersed domains were observed, when the weight fraction of s was less than 50%. The origins of the morphology formation in the blend thin films via solvent treatment are discussed. Combined with the theoretical prediction by Birshtein et al. (Polymer 1992, 33, 2750), we interpret the formation of these special microstructures as due to the packing frustration induced by the difference in block lengths and the preferential interactions between the solvent and PMMA block.
Resumo:
Dynamics of dewetting and phase separation in ultrathin films (thickness is ca. one radius of gyration, approximate to 1 R-g) of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) blends on Si substrate has been studied by in situ atomic force microscopy (AFM). In the miscible region, a "spinodal-like" dewetting driven by a composition fluctuation recently predicted by Wensink and Jerome (Langmuir 2002, 18, 413) occurs. In the two-phase region, the dewetting of the whole film is followed by phase separation in the droplets, coupling with the wetting of the substrate by the PMMA extracted by the strong attractive interaction between them.
Resumo:
The crystallization behavior and morphology of nonreactive and reactive melt-mixed blends of polypropylene (PP) and polyamide (PA12; as the dispersed phase) were investigated. It Was found that the crystallization behavior and the size of the PA12 particles were dependent on the content of the compatibilizer (maleic anhydride-modified polypropylene) because an in situ reaction occurred between the maleic anhydride groups of the compatibilizer and the amide end groups of PA12. When the amount of compatibilizer was more than 4%, the PA12 did not crystallize at temperatures typical for bulk crystallization. These finely dispersed PA12 particles crystallized co-incidently with the 1313 phase. The changes in domain size with compatibilizer content were consistent with Wu's theory. These investigations showed that crystallization of the dispersed phase Could not be explained solely by the size of the dispersion. The interfacial tension between the polymeric components in the blends may yield information on the fractionation of crystallization.
Resumo:
The effects of the molecular weights (molecular weight of polystyrene, M-w,M-PS, varying from 2.9 to 129 k) on the surface morphologies of spin-coated and annealed polystyrene/poly (methyl methacrylate) (PS/PMMA = 50/50, w/w) blend films were investigated by atomic force microscopy and X-ray photoelectron spectroscopy. For the spin-coated films, when the M-w,M-PS varied from 2.9 to 129 k, three different kinds of surface morphologies (a nanophase-separated morphology, a PMMA cellular or network-like morphology whose meshes filled with PS, a sea-island like morphology) were observed and their formation mechanisms are discussed, respectively. Upon annealing, two different morphology-evolution processes were observed. It is found that a upper PS-rich phase layer is formed when M-w,M-PS < 4 k, and this behavior is mainly attributed to the low interfacial tension between PS and PMMA component. When M-w,M-PS > 4 k, the PS-rich phase forms droplets on top of the PMMA-rich phase layer which wets the SiOx substrate. These results indicate that the surface morphology of the polymer blend films can be controlled by the polymer molecular weight and annealing conditions.
Resumo:
We have investigated the current-voltage and electroluminescent (EL) characteristics of single-layer organic devices based on poly(9-vinylcarbazole) (PVK) and tris(8-hydroxyquinoline)aluminium (Alq(3)) blend with different PVK : Alq(3) concentrations. The experimental results from the observed thickness and temperature dependence clearly demonstrate that the current at low voltage is due to the holes injected at the anode and is space-charge limited, whereas the current at the high voltage that steeply increases is explained as the electron tunnelling injection at the cathode. The hole mobility is directly determined by space-charge-limited current at the low voltage region and decreases with increasing Alq(3) content in the blend. The EL efficiency shows concentration dependence, which is attributed to the change of the transport of electrons and holes in the blend film.
Resumo:
The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.
Resumo:
The cloud-point temperatures (T-cl's) of poly(ethylene oxide) (PEO) and poly(ethylene oxide)-block-polydimethylsiloxane (P(EO-b-DMS)) homopolymer and block-oligomer mixtures were determined by turbidity measurements over a range of temperatures (105 to 130degrees), pressures (1 to 800 bar), and compositions (10-40 wt.-% PEO). The system phase separates upon cooling and T-cl was found to decrease with an increase in pressure for a constant composition. In the absence of special effects, this finding indicates negative excess volumes. Special attention was paid to the demixing temperatures as a function of the pressure for the different polymer mixtures and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of the polymer mixture under pressures were observed for different compositions. The Sanchez-Lacombe (SL) lattice fluid theory was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalphy of mixing, and the volume changes of mixing. The calculated results show that modified P(EO-b-DMS) scaling parameters with the new combining rules can describe the thermodynamics of the PEO/P(EO-b-DMS) system well with the SL theory.
Resumo:
The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]
Resumo:
This work is intended to provide a method for the preparation of maleic anhydride grafted syndiotactic polystyrene (sPS-g-MA). In particular, a novel solid reaction method by a radical grafting approach is investigated. The grafting reaction is performed at a solid state, where the syndiotactic polystyrene (sPS) is swollen in solvent at relatively low temperature compared to the conventional melt modification method. The formation of sPS-g-MA is directly confirmed by Fourier transform infrared spectroscopy and by the morphology observation of sPS/polyamide-6 (Nylon6) blends, when sPS-g-MA is used as a reactive compatibilizer.