992 resultados para Oxygen concentrations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benthic foraminiferal faunas from three bathyal sequences provide a proxy record of oceanographic changes through the mid-Pleistocene transition (MPT) on either side of the Subtropical Front (STF), east of New Zealand. Canonical correspondence analyses show that factors related to water depth, latitude and climate cycles were more significant than oceanographic factors in determining changes in faunal assemblage composition over the last 1 Ma. Even so, mid-Pleistocene faunal changes are recognizable and can be linked to inferred palaeoceanographic causes. North of the largely stationary STF the faunas were less variable than to the south, perhaps reflecting the less extreme glacial-interglacial fluctuations in the overlying Subtropical Surface Water. Prior to Marine Isotope Stage (MIS) 21 and after MIS 15, the northern faunas had fairly constant composition, but during most of the MPT faunal composition fluctuated in response to climate-related food-supply variations. Faunal changes through the MPT suggest increasing food supply and decreasing dissolved bottom oxygen. South of the STF, beneath Subantarctic Surface Water, mid-Pleistocene faunas exhibited strong glacial-interglacial fluctuations, inferred to be due to higher interglacial nutrient supply and lower oxygen levels. The most dramatic faunal change in the south occurred at the end of the MPT (MIS 17- 12). with an acme of Abditodentrix pseudothalmanni, possibly reflecting higher carbon flux and lower bottom oxygen. This study suggests that the mid-Pleistocene decline and extinction of a group of elongate, cylindrical deep-sea foraminifera may have been related to decreased bottom oxygen concentrations as aresult of slower deep-water currents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews Japanese limnological studies mainly in the McMurdo and Syowa oases, with special emphasis on the nutrient distribution. Generally, the chemical composition of the major ionic components in the coastal lakes and ponds is similar to that in seawater, while that in inland Dry Valley lakes and ponds of the McMurdo Oasis is abundant in calcium, magnesium and sulfate ions. The former can be explained by the direct influences of sea salts, while the latter is mainly attributable to the accumulation of atmospheric salts. Most saline lakes are meromictic. Dissolved oxygen concentrations in the upper layers are saturated or supersaturated, but the bottom layers are anoxic and often hydrogen sulfide occurs. The concentrations of nutrients vary largely not only among the lakes but also with depth. Silicate-Si, which is generally abundant in all freshwater and saline lakes, may be due to erosions of soils and rocks. Nitrite-N concentrations in both freshwater and saline lakes are generally low. Nitrate-N concentrations in the oxic layers of the inland saline lakes in the McMurdo Oasis arc often high, but not high in the coastal saline lakes of the Syowa and Vestfold oases. The abundance of phosphate-P and ammonium-N in the bottom stagnant layers of saline lakes can be explained by the accumulation of microbially released nutrients due to the decomposition of organic substances. Nutrients are supplied mainly from meltstreams in the catchment areas, and are proved to play an important role in primary production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The detection of multi-decadal trends in the oceanic oxygen content and its possible attribution to global warming is protracted by the presence of a substantial amount of interannual to decadal variability, which hitherto is poorly known and characterized. Here we address this gap by studying interannual to decadal changes of the oxygen concentration in the Subpolar Mode Water (SPMW), the Intermediate Water (IW) and the Mediterranean Outflow Water (MOW) in the eastern North Atlantic. We use data from a hydrographic section located in the eastern North Atlantic at about 48°N repeated 12 times over a period of 19 years from 1993 through 2011, with a nearly annual resolution up to 2005. Despite a substantial amount of year-to-year variability, we observe a long-term decrease in the oxygen concentration of all three water masses, with the largest changes occurring from 1993 to 2002. During that time period, the trends were mainly caused by a contraction of the subpolar gyre associated with a northwestward shift of the Subpolar Front (SPF) in the eastern North Atlantic. This caused SPMW to be ventilated at lighter densities and its original density range being invaded by subtropical waters with substantially lower oxygen concentrations. The contraction of the subpolar gyre reduced also the penetration of IW of subpolar origin into the region in favor of an increased northward transport of IW of subtropical origin, which is also lower in oxygen. The long-term oxygen changes in the MOW were mainly affected by the interplay between circulation and solubility changes. Besides the long-term signals, mesoscale variability leaves a substantial imprint as well, affecting the water column over at least the upper 1000 m and laterally by more than 400 km. Mesoscale eddies induced changes in the oxygen concentration of a magnitude that can substantially alias analyses of long-term changes based on repeat hydrographic data that are being collected at intervals of typically 10 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An understanding of sediment redox conditions across the Paleocene-Eocene thermal maximum (PETM) (?55 Ma) is essential for evaluating changes in processes that control deep-sea oxygenation, as well as identifying the mechanisms responsible for driving the benthic foraminifera extinction. Sites cored on the flanks of Walvis Ridge (Ocean Drilling Program Leg 208, Sites 1262, 1266, and 1263) allow us to examine changes in bottom and pore water redox conditions across a ~2 km depth transect of deep-sea sediments of PETM age recovered from the South Atlantic. Here we present measurements of the concentrations of redox-sensitive trace metals manganese (Mn) and uranium (U) in bulk sediment as proxies for redox chemistry at the sediment-water interface and below. All three Walvis Ridge sites exhibit bulk Mn enrichment factors (EF) ranging between 4 and 12 prior to the warming, values at crustal averages (Mn EF = 1) during the warming interval, and a return to pre-event values during the recovery period. U enrichment factors across the PETM remains at crustal averages (U EF = 1) at Site 1262 (deep) and Site 1266 (intermediate depth). U enrichment factors at Site 1263 (shallow) peaked at 5 immediately prior to the PETM and dropped to values near crustal averages during and after the event. All sites were lower in dissolved oxygen content during the PETM. Before and after the PETM, the deep and intermediate sites were oxygenated, while the shallow site was suboxic. Our geochemical results indicate that oxygen concentrations did indeed drop during the PETM but not sufficiently to cause massive extinction of benthic foraminifera.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changing global climate due to anthropogenic emissions of CO2 are driving rapid changes in the physical and chemical environment of the oceans via warming, deoxygenation, and acidification. These changes may threaten the persistence of species and populations across a range of latitudes and depths, including species that support diverse biological communities that in turn provide ecological stability and support commercial interests. Worldwide, but particularly in the North Atlantic and deep Gulf of Mexico, Lophelia pertusa forms expansive reefs that support biological communities whose diversity rivals that of tropical coral reefs. In this study, L. pertusa colonies were collected from the Viosca Knoll region in the Gulf of Mexico (390 to 450 m depth), genotyped using microsatellite markers, and exposed to a series of treatments testing survivorship responses to acidification, warming, and deoxygenation. All coral nubbins survived the acidification scenarios tested, between pH of 7.67 and 7.90 and aragonite saturation states of 0.92 and 1.47. However, calcification generally declined with respect to pH, though a disparate response was evident where select individuals net calcified and others exhibited net dissolution near a saturation state of 1. Warming and deoxygenation both had negative effects on survivorship, with up to 100% mortality observed at temperatures above 14ºC and oxygen concentrations of approximately 1.5 ml·l-1. These results suggest that, over the short-term, climate change and OA may negatively impact L. pertusa in the Gulf of Mexico, though the potential for acclimation and the effects of genetic background should be considered in future research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present new high-resolution N isotope records from the Gulf of Tehuantepec and the Nicaragua Basin spanning the last 50-70 ka. The Tehuantepec site is situated within the core of the north subtropical denitrification zone while the Nicaragua site is at the southern boundary. The d15N record from Nicaragua shows an 'Antarctic' timing similar to denitrification changes observed off Peru-Chile but is radically different from the northern records. We attribute this to the leakage of isotopically heavy nitrate from the South Pacific oxygen minimum zone (OMZ) into the Nicaragua Basin. The Nicaragua record leads the other eastern tropical North Pacific (ETNP) records by about 1000 years because denitrification peaks in the eastern tropical South Pacific (ETSP) before denitrification starts to increase in the Northern Hemisphere OMZ, i.e., during warming episodes in Antarctica. We find that the influence of the heavy nitrate leakage from the ETSP is still noticeable, although attenuated, in the Gulf of Tehuantepec record, particularly at the end of the Heinrich events, and tends to alter the recording of millennial timescale denitrification changes in the ETNP. This implies (1) that sedimentary d15N records from the southern parts of the ETNP cannot be used straightforwardly as a proxy for local denitrification and (2) that denitrification history in the ETNP, like in the Arabian Sea, is synchronous with Greenland temperature changes. These observations reinforce the conclusion that on millennial timescales during the last ice age, denitrification in the ETNP is strongly influenced by climatic variations that originated in the high-latitude North Atlantic region, while commensurate changes in Southern Ocean hydrography more directly, and slightly earlier, affected oxygen concentrations in the ETSP. Furthermore, the d15N records imply ongoing physical communication across the equator in the shallow subsurface continuously over the last 50-70 ka.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trace fossils and ichnofabric were examined from cores of Late Cretaceous to Quaternary age recovered from the Kerguelen Plateau, Indian Ocean. Nearly all of the strata are completely bioturbated, with ichnofabric index 6 most commonly recorded. Preserved discrete trace fossils include Chondrites, Planolites, Zoophycos, and Thalassinoides. A continuous Cretaceous/Tertiary boundary section preserved at ODP Site 738 occurs within a 15-cm-thick interval of laminated sediments. The lack of bioturbation indicates the disappearance of bioturbating organisms from the seafloor, possibly as a result of the same factors that caused the mass extinction or changes in other environmental conditions - most probably, bottom-water oxygen concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rate of uranium accumulation in oceanic sediments from seawater is controlled by bottom water oxygen concentrations and organic carbon fluxes-two parameters that are linked to deep ocean storage of CO2. To investigate glacial-interglacial changes in what is known as authigenic U, we have developed a rapid method for its determination as a simple addition to a procedure for foraminiferal trace element analysis. Foraminiferal calcite acts as a low U substrate (U/Ca < 15 nmol/mol) upon which authigenic U accumulates in reducing sediments. We measured a downcore record of foraminiferal U/Ca from ODP Site 1090 in the South Atlantic and found that U/Ca ratios increase by 70-320 nmol/mol during glacial intervals. There is a significant correlation between U/Ca records of benthic and planktonic foraminiferal species and between U/Ca and bulk sediment authigenic U. These results indicate that elevated U/Ca ratios are attributable to the accumulation of authigenic U coatings in sediments. Foraminiferal Mn/Ca ratios were lower during the glacial intervals, suggesting that the observed U accumulation on the shells is not directly linked to U incorporation into secondary manganese phases. Thus, foraminiferal U/Ca ratios may provide useful information on past changes in sediment redox conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intervals of organic C- and carbonate-rich laminated sediments occur in the Sea of Japan with roughly the same frequency as temperature changes observed in Greenland ice cores, providing clear evidence of rapid oceanographic change during the past 36 kyr. Planktonic foraminiferal d18O data suggest that only the laminated sediments deposited during the Last Glacial Maximum (LGM), and perhaps one other interval formed during a period of increased water column stratification. Sedimentary Re and Mo data are consistent with bottom waters that were sulfidic during the LGM and suboxic during other laminated intervals. Results of a numerical model of Corg and Re burial are consistent with a mechanism whereby an increased Corg flux to the seafloor drove oxygen concentrations toward depletion during times of deposition of the suboxic laminated intervals. Such a process could have resulted from increased upwelling driven either by increased deep water formation due to colder and/or more saline surface waters or by stronger northeasterly monsoonal winds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An organic-walled dinoflagellate cyst analysis was carried out on 53 surface sediment samples from West Africa (17-6°N) to obtain insight in the relationship between their spatial distribution and hydrological conditions in the upper water column as well as marine productivity in the study area. Multivariate analysis of the dinoflagellate cyst relative abundances and environmental parameters of the water column shows that sea-surface temperature, salinity, marine productivity and bottom water oxygen are the factors that relate significantly to the distribution patterns of individual species in the region. The composition of cyst assemblages and dinoflagellate cyst concentrations allows the identification of four hydrographic regimes; 1) the northern regime between 17 and 14°N characterized by high productivity associated with seasonal coastal upwelling, 2) the southern regime between 12 and 6°N associated with high-nutrient waters influenced by river discharge 3) the intermediate regime between 14 and 12°N influenced mainly by seasonal coastal upwelling additionally associated with fluvial input of terrestrial nutrients and 4) the offshore regime characterized by low chlorophyll-a concentrations in upper waters and high bottom water oxygen concentrations. Our data show that cysts of Polykrikos kofoidii, Selenopemphix quanta, Dubridinium spp., Echinidinium species, cysts of Protoperidinium monospinum and Spiniferites pachydermus are the best proxies to reconstruct the boundary between the NE trade winds and the monsoon winds in the subtropical eastern Atlantic Ocean. The association of Bitectatodinium spongium, Lejeunecysta oliva, Quinquecuspis concreta, Selenopemphix nephroides, Trinovantedinium applanatum can be used to reconstruct past river outflow variations within this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silicon isotopes are a powerful tool to investigate the cycling of dissolved silicon (Si). In this study the distribution of the Si isotope composition of dissolved silicic acid (d30Si(OH)4) was analyzed in the water column of the Eastern Equatorial Pacific (EEP) where one of the globally largest Oxygen Minimum Zones (OMZs) is located. Samples were collected at 7 stations along two meridional transects from the equator to 14°S at 85°50'W and 82°00'W off the Ecuadorian and Peruvian coast. Surface waters show a large range in isotope compositions d30Si(OH)4 (+2.2 per mil to +4.4 per mil) with the highest values found at the southernmost station at 14°S. This station also revealed the most depleted silicic acid concentrations (0.2 µmol/kg), which is a function of the high degree of Si utilization by diatoms and admixture with waters from highly productive areas. Samples within the upper water column and the OMZ at oxygen concentrations below 10 µmol/kg are characterized by a large range in d30Si(OH)4, which mainly reflects advection and mixing of different water masses, even though the highly dynamic hydrographic system of the upwelling area off Peru does not allow the identification of clear Si isotope signals for distinct water masses. Therefore we cannot rule out that also dissolution processes have an influence on the d30Si(OH)4 signature in the subsurface water column. Deep water masses (>2000 m) in the study area show a mean d30Si(OH)4 of +1.2±0.2 per mil, which is in agreement with previous studies from the eastern and central Pacific. Comparison of the new deep water data of this study and previously published data from the central Pacific and Southern Ocean reveal substantially higher d30Si(OH)4 values than deep water signatures from the North Pacific. As there is no clear correlation between d30Si(OH)4 and silicic acid concentrations in the entire data set the distribution of d30Si(OH)4 signatures in deep waters of the Pacific is considered to be mainly a consequence of the mixing of several end member water masses with distinct Si isotope signatures including Lower Circumpolar Deep Water (LCDW) and North Pacific Deep Water (NPDW).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To obtain insight in the relationship between the spatial distribution of organic-walled dinoflagellate cysts (dinocysts) and local environmental conditions, fifty-eight surface sediment samples from the coastal shelf off SW Africa were investigated on their dinocyst content with special focus on the two main river systems and the active upwelling that characterise this region. To avoid possible overprint by species-selective preservation, samples have been selected mainly from shelf sites where high sedimentation rates and/or low bottom water oxygen concentrations prevail. Multivariate ordination analyses have been carried out to investigate the relationship between the distribution patterns of individual species to environmental parameters of the upper water column and sediment transport processes. The main oceanographical variables at the surface (temperature, salinity, nutrients chlorophyll-a) in the region show onshore-offshore gradients. This pattern is reflected in the dinocyst associations with high relative abundances of heterotrophic dinocyst species in neritic regions characterised by high chlorophyll-aand low salinity conditions in surface waters. Phototrophic dinocyst species, notably Operculodinium centrocarpum, dominate in the more oceanic area. Differences in the distribution of phototrophic dinocyst species can be related to sea surface salinity and sea surface temperature gradients and to a lesser extent to chlorophyll-a concentrations. Apart from longitudinal gradients the dinocyst distribution clearly reflects regional environmental features. Six groups of species can be distinguished, characteristic for (1) coastal regions (cysts of Polykrikos kofoidii and Selenopemphix quanta), (2) the vicinity of active upwelling (Brigantedinium spp., Echinidinium aculeatum, Echinidinium spp. and Echinidinium transparantum), (3) river mouths (Lejeunecysta oliva, cysts of Protoperidinium americanum, Selenopemphix nephroides and Votadinium calvum), (4) slope and open ocean sediments (Dalella chathamense, Impagidinium patulum and Operculodinium centrocarpum, (5) the southern Benguela region (south of 24°S) (Spiniferites ramosus) and (6) the northern Benguela region (north of 24°S) (Nematosphaeropsis labyrinthus and Pyxidinopsis reticulata). No indication of overprint of the palaeo-ecological signal by lateral transport of allochthonous species could be observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The table includes hydrography (salinity, temperature, density, oxygen concentrations) and nutrient (nitrate, nitrite, ammonium, phosphate) measurements from surface waters (upper 200 m) across a 14 °N transect of the Tropical North Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

North Atlantic climate variations are reflected in sedimentary records from the northern Indian Ocean in which two basins, the Arabian Sea and the Bay of Bengal, are strongly affected by the monsoon. Contrary to the Bay of Bengal the Arabian Sea plays an important role in the global marine nitrogen cycle. In its mid-water oxygen minimum zone (OMZ) bioavailable fixed nitrogen is reduced to nitrogen gas (NO3- - > N2), whereas oxygen concentrations are slightly above the threshold of nitrate reduction in the OMZ of the Bay of Bengal. A coral colony (Porites lutea) growing south of Port Blair on the Andaman Islands in the Bay of Bengal was studied for its response to changes in the monsoon system and its link to temperature changes in the North Atlantic Ocean, between 1975 and 2006. Its linear extension rates, d13C and d18O values measured within the coral skeleton reveal a strong seasonality, which seems to be caused by the monsoon-driven reversal of the surface ocean circulation. The sampling site appears to be influenced by low salinity Bay of Bengal Water during the NE monsoon (boreal winter) and by the high salinity Arabian Sea Water during the SW monsoon in summer. The high salinity Arabian Sea Water circulates along with the Summer Monsoon Current (S-MC) from the Arabia Sea into the Bay of Bengal. Decreasing d18O and reconstructed salinity values correlate to the increasing SSTs in the North Atlantic Ocean indicating a reduced influence of the S-MC at the sampling site in the course of northern hemispheric warming. During such periods oxygen-depletion became stronger in the OMZ of the Arabian Sea as indicated by the sedimentary records. A reduced propagation of oxygen-depleted high salinity Arabian Sea Water into the Bay of Bengal could be a mechanism maintaining oxygen concentration above the threshold of nitrate reduction in the OMZ of the Bay of Bengal in times of global warming.