984 resultados para Oxygen Minimum Zone (OMZ)
Resumo:
The organic matter contained within a series of Albian to Cenomanian, dark gray to black marls was characterized using pyrolysis techniques and analysis (elemental and carbon isotopes) of isolated kerogens. It was concluded that this material had a marine affinity. Variations in geochemical characteristics reflect differences in the extent of preservation, rather than changes in organic provenance. These changes appear to reflect differences in water depth and the position of the depositional site relative to the oxygen-minimum zone. Sediments displaying the most elevated levels of organiccarbon and hydrogen enrichment probably reflect sedimentation within the oxygen-minimum zone. Waters within the oxygen-minimum zone were probably dysaerobic, rather than anoxic. The presence of at least trace quantities of oxygen at the depositional site explains the poor degree of organic preservation and the material's largely gas-prone characteristics.
Resumo:
Historically, the Holocene has been considered an interval of relatively stable climate. However, recent studies from the northern Arabian Sea (Netherlands Indian Ocean Program 905) suggested high-amplitude climate shifts in the early and middle Holocene based on faunal and benthic isotopic proxy records. We examined benthic foraminiferal faunal and stable isotopic data from Ocean Drilling Program (ODP) Site 723 and total organic carbon data from ODP Site 724, Oman Margin (808 and 593 m water depths, respectively). At Site 723 the mid-Holocene shift in d18O values of infaunal benthic species Uvigerina peregrina (1.4 per mil) is 3 times larger than that of epifaunal benthic species Cibicides kullenbergi recorded at Site NIOP 905 off Somalia. However, none of the five other benthic species we measured at Hole 723A exhibits such a shift in d18O. We speculate that the late Holocene d18O decrease in U. peregrina represents species-specific changes in ecological habitat or food preference in response to changes in surface and deep ocean circulation. While the stable isotopic data do not appear to indicate a middle Holocene climatic shift, our total organic carbon and benthic faunal assemblage data do indicate that the early Holocene deep Arabian Sea was influenced by increased ventilation perhaps by North Atlantic Deep Water and/or Circumpolar Deep Water incursions into the Indian Ocean, leading to remineralization of organic matter and a relatively weak early Holocene oxygen minimum zone in the northwest Arabian Sea in spite of strong summer monsoon circulation.
(Table 5) Factor score matrix for geochemical parameters of Northwest Indian Ocean surface sediments
Resumo:
Sediments from the Gulf of California contain sufficient amounts of thermally reactive organic matter to be considered fair-to-good potential petroleum source rocks. While sediments deposited within the present oxygen-minimum zone have the greatest amounts of organic matter, those deposited below the oxygen-minimum contain sufficient organic matter to be considered potential source rocks. The organic matter in the sediment is almost exclusively marine, Type II kerogen. Different techniques of determining kerogen composition produce generally compatible answers, although pyrolysis gives somewhat misleading results. Elemental analysis of the kerogen and vitrinite reflectance measurements indicate that the organic matter is not buried to sufficiently great depth for significant petroleum generation, despite the high temperature gradients.
Resumo:
Analyses of sediments from Leg 64 sites reveal a diverse and in one case unique geochemistry. Sites are characterized by high heat flow along an active, divergent plate boundary, or rapid accumulation of diatom muds, or both. The geochemical trends of Sites 474-476 at the tip of Baja California reflect changes4n the percentages of sedimentary components - particularly biogenous matter and mineralogy - that support interpretations of sedimentary environments inferred to be present since the commencement of subsidence along this young, passive continental margin. The sediments below dolerite sills in Holes 477, 477A, 478, and 481 show major mineralogic and chemical deviations from "average" hemipelagic sediments. The sills appear to have two functions: (1) they allow hydrothermal circulation and metamorphism in a partially closed system by trapping heat and fluids emanating from below, and (2) they expel heated interstitial fluids at the moment of intrusion and mobilize elements, most likely leading to the formation of metalliferous deposits along the surface traces of normal faults in the basin. The hydrothermal system as a whole appears to be localized and ephemeral, as is indicated by the lack of similar geochemical trends and high heat flow at Sites 478 and 481. Site 479 illustrates sedimentation in an oxygen-minimum zone with anoxic sediments and concomitant geochemical trends, especially for MnO. With few exceptions, geochemical trends are remarkably constant with depth, suggesting that Site 479 can serve as an "internal" standard or average sediment against which the magnitude of hydrothermal alteration at the basinal Sites 477, 478, and 481 can be measured.
Resumo:
Visual kerogen and total organic carbon determinations indicate that there are two periods of organic enrichment events in the Mesozoic sediments of the South Atlantic. The first period, from the Late Jurassic through the late Aptian, is recorded in sediments from the Falkland Plateau, the Cape Basin, and the Angola Basin. Apparently, salinity stratification in the restricted basin, coupled with rising sea level, led to bottom water anoxia and organic enrichment. The second event, from the late Albian to the Santonian period, is recorded in sediments from the Angola Basin and the Sao Paulo Plateau. It appears to have been caused by development of an anoxic oxygen minimum zone at midwater depths. Organic matter sedimentation in the Mesozoic South Atlantic is controlled by geologic, climatic, eustatic, and Oceanographic factors.