978 resultados para Osteoclast Differentiation Factor
Resumo:
Host resistance to Leishmania major is highly dependent on the development of a Th1 immune response. The TLR adaptator myeloid differentiation protein 88 (MyD88) has been implicated in the Th1 immune response associated with the resistant phenotype observed in C57BL/6 mice after infection with L. major. To investigate whether the MyD88 pathway is differentially used by distinct substrains of parasites, MyD88(-/-) C57BL/6 mice were infected with two substrains of L. major, namely L. major LV39 and L. major IR75. MyD88(-/-) mice were susceptible to both substrains of L. major, although with different kinetics of infection. The mechanisms involved during the immune response associated with susceptibility of MyD88(-/-) mice to L. major is however, parasite substrain-dependent. Susceptibility of MyD88(-/-) mice infected with L. major IR75 is a consequence of Th2 immune-deviation, whereas susceptibility of MyD88(-/-) mice to infection with L. major LV39 resulted from an impaired Th1 response. Depletion of regulatory T cells (Treg) partially restored IFN-gamma secretion and the Th1 immune response in MyD88(-/-) mice infected with L. major LV39, demonstrating a role of Treg activity in the development of an impaired Th1 response in these mice.
Resumo:
Plasmodium sporozoites traverse several host cells before infecting hepatocytes. In the process, the plasma membranes of the cells are ruptured, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory/immunogenic and can serve as a danger signal initiating distinct responses in various cells. Thus, our study aimed at characterizing the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-kappaB, a main regulator of host inflammatory responses, in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-kappaB occurred shortly after infection and led to a reduction of infection load in a time-dependent manner in vitro and in vivo, an effect that could be reverted by addition of the specific NF-kappaB inhibitor BAY11-7082. Furthermore, no NF-kappaB activation was observed when Spect(-/-) parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-kappaB activation causes the induction of inducible NO synthase expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88(-/-) mice showed no NF-kappaB activation and inducible NO synthase expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. Thus, host cell wounding due to parasite migration induces inflammation which limits the extent of parasite infection
Resumo:
Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.
Resumo:
NHA2 was recently identified as a novel sodium/hydrogen exchanger which is strongly upregulated during RANKL-induced osteoclast differentiation. Previous in vitro studies suggested that NHA2 is a mitochondrial transporter required for osteoclast differentiation and bone resorption. Due to the lack of suitable antibodies, NHA2 was studied only on RNA level thus far. To define the protein's role in osteoclasts in vitro and in vivo, we generated NHA2-deficient mice and raised several specific NHA2 antibodies. By confocal microscopy and subcellular fractionation studies, NHA2 was found to co-localize with the late endosomal and lysosomal marker LAMP1 and the V-ATPase a3 subunit, but not with mitochondrial markers. Immunofluorescence studies and surface biotinylation experiments further revealed that NHA2 was highly enriched in the plasma membrane of osteoclasts, localizing to the basolateral membrane of polarized osteoclasts. Despite strong upregulation of NHA2 during RANKL-induced osteoclast differentiation, however, structural parameters of bone, quantified by high-resolution microcomputed tomography, were not different in NHA2-deficient mice compared to wild-type littermates. In addition, in vitro RANKL stimulation of bone marrow cells isolated from wild-type and NHA2-deficient mice yielded no differences in osteoclast development and activity. Taken together, we show that NHA2 is a RANKL-induced plasmalemmal sodium/hydrogen exchanger in osteoclasts. However, our data from NHA2-deficient mice suggest that NHA2 is dispensable for osteoclast differentiation and bone resorption both in vitro and in vivo.
Resumo:
AbstractDespite advances in diagnosis and treatment made over the past two decades, high-gradeprimary brain tumors remain incurable neoplasms. Glioblastoma (GBM) represents the mostmalignant stage of astrocytic brain tumors. Identification of diagnostic and prognostic markers ineasily accessible biological material, such as plasma or cerebro-spinal fluid (CSF), would greatlyfacilitate the management of GBM patients. Elucidation of the molecular mechanisms that underlie thefunction of the factors implicated in GBM development would pave the way towards their potentialutility in cancer-targeting therapy.MIC-1/GDF15 (Macrophage Inhibitory Cytokine-1/ Growth Differentiation Factor 15), asecreted protein of the TGF-β superfamily, emerged as a candidate marker exhibiting increasingmRNA expression during astrocytoma malignant progression. However, injection of MIC-1/GDF15over-expressing GBM cell lines into nude mice has been previously shown to completely abolish theinherent tumorigenicity.In this study, determination of MIC-1/GDF15 protein levels in the CSF of a cohort of 94patients with intracranial tumors including astrocytomas (grades II, III and IV), meningioma, andmetastasis revealed significantly increased concentrations in GBM patients as compared to controlcohort of patients treated for non-neoplastic diseases. However, MIC-1/GDF15 levels were notelevated in the matching plasma samples from these patients. Most interestingly, GBM patients withthe increased concentrations of MIC-1/GDF15 in the CSF had worse outcome.In GBM tissue, it was found that the expression of MIC-1/GDF15 gene is low. Promotermethylation of the gene may partially explain the overall low expression levels. Investigation of thecellular origin of MIC-1/GDF15 expression in GBM tissue led to the MIC-1/GDF15 protein detectionin a subpopulation of the tumor infiltrating macrophages. These findings substantiated the workinghypothesis of MIC-1/GDF15 as harboring tumor-suppressive properties in GBM. Analysis of thesignaling pathway mediated by MIC-1/GDF15 in GBM highlighted the potential role of TGF-β signaltransduction. However, the lack of the functional response to the presence of MIC-1/GDF15 in-vitrosuggested operation of a paracrine loop for suppression of tumor formation which is evident solely invivo.In conclusion, MIC-1/GDF15 protein measured in the CSF may have diagnostic andprognostic values in patients with intracranial tumors. Molecular studies collectively proposeimplication of the tumor-host interactions in mediating the MIC-1/GDF15 tumor-suppressing activityduring GBM development.RésuméMalgré les progrès durant ces deux dernières décennies dans le diagnostique et le traitementdes tumeurs du cerveau primaires, ces néoplasmes restent incurables. Le glioblastome représente laforme la plus maligne des tumeurs astrocytiques du cerveau (astrocytomes). Pour le diagnostic et lepronostic, l'identification de marqueurs présents dans des substances facilement accessibles comme leplasma où le liquide céphalorachidien (LCR) faciliterait beaucoup la prise en charge des patients. Lacompréhension des mécanismes moléculaires de facteurs impliqués dans le développement du GBMpourrait ouvrir la voie vers l'utilisation de ces mécanismes dans des thérapies ciblées.MIC-1/GDF15 (Macrophage Inhibitory Cytokine-1/ Growth Differentiation Factor 15), uneprotéine secrétée qui appartient à la superfamille TGF-β, s'est révélé être un marqueur candidat, dontl'expression d'ARN messager augmente pendant la progression des astrocytomes malins. Cependant,une précedente étude montre que l'injection des lignées cellulaires de GBM fortement productrices deMIC-1/GDF15 dans des souris immunodéprimées abolit la tumorigénicité.Dans cette étude, les mesures dans une cohorte de 94 patients atteints de tumeursintracrâniennes comprenant des astrocytomes (grades II, III et IV), méningiomes et métastases,présentent des augmentations significatives des niveaux protéiques de MIC-1/GDF15 dans le LCRdes patients atteints de GBM par rapport aux patients traités pour des maladies non cancéreuses.Cependant, les niveaux de MIC-1/GDF15 n'étaient pas spécialement élevés dans le plasma. De plus,les patients atteints d'un GBM avec des niveaux élevés de MIC-1/GDF15 dans le LCR ont survécumoins longtemps. Dans les tissus de glioblastome, on observe que le gène MIC-1/GDF15 est peuexprimé. La méthylation du promoteur explique partiellement le faible niveau d'expression du gène.La recherche l'origine cellulaire de l'expression de MIC-1/GDF15, a permis de découvrir la présencede protéines MIC-1/GDF15 dans une sous-population de macrophages qui infiltrent les tumeurs. Cetteobservation supporte l'hypothèse que MIC-1/GDF15 présentait des propriétés de suppression destumeurs de type GBM. Des études sur les voies de signalisation régulées par MIC-1/GDF15 dans lesGBMs ont souligné l'importance de la voie de transduction du signal TGF-β. Cependant, l'absence deréponse fonctionnelle à MIC-1/GDF15 in vitro suggère fortement l'activité d'une boucle paracrinepour la répression de la formation de tumeur, qui n'est observé que in vivo.En conclusion, la protéine MIC-1/GDF15 mesurée dans le LCR pourrait avoir une valeur pourle diagnostic et le pronostic chez les patients atteints de GBM. Les études moléculaires suggèrent unepossible implication de l'interaction hôte-tumeur dans l'activité anti-tumorale de MIC-1/GDF15 sur leGBM.
Resumo:
OBJECTIVES: Leri's pleonosteosis (LP) is an autosomal dominant rheumatic condition characterised by flexion contractures of the interphalangeal joints, limited motion of multiple joints, and short broad metacarpals, metatarsals and phalanges. Scleroderma-like skin thickening can be seen in some individuals with LP. We undertook a study to characterise the phenotype of LP and identify its genetic basis. METHODS AND RESULTS: Whole-genome single-nucleotide polymorphism genotyping in two families with LP defined microduplications of chromosome 8q22.1 as the cause of this condition. Expression analysis of dermal fibroblasts from affected individuals showed overexpression of two genes, GDF6 and SDC2, within the duplicated region, leading to dysregulation of genes that encode proteins of the extracellular matrix and downstream players in the transforming growth factor (TGF)-β pathway. Western blot analysis revealed markedly decreased inhibitory SMAD6 levels in patients with LP. Furthermore, in a cohort of 330 systemic sclerosis cases, we show that the minor allele of a missense SDC2 variant, p.Ser71Thr, could confer protection against disease (p<1×10(-5)). CONCLUSIONS: Our work identifies the genetic cause of LP in these two families, demonstrates the phenotypic range of the condition, implicates dysregulation of extracellular matrix homoeostasis genes in its pathogenesis, and highlights the link between TGF-β/SMAD signalling, growth/differentiation factor 6 and syndecan-2. We propose that LP is an additional member of the growing 'TGF-β-pathies' group of musculoskeletal disorders, which includes Myhre syndrome, acromicric dysplasia, geleophysic dysplasias, Weill-Marchesani syndromes and stiff skin syndrome. Identification of a systemic sclerosis-protective SDC2 variant lays the foundation for exploration of the role of syndecan-2 in systemic sclerosis in the future.
Resumo:
The human skeleton is composed of bone and cartilage. The differentiation of bone and cartilage cells from their bone marrow progenitors is regulated by an intrinsic network of intracellular and extracellular signaling molecules. In addition, cells coordinate their differentiation and function through reciprocal cell‐to‐cell interactions. MicroRNAs (miRNAs) are small, single‐stranded RNA molecules that inhibit protein translation by binding to messenger RNAs (mRNAs). Recent evidence demonstrates the involvement of miRNAs in multiple biological processes. However, their role in skeletal development and bone remodeling is still poorly understood. The aim of this thesis was to elucidate miRNA‐mediated gene regulation in bone and cartilage cells, namely in osteoblasts, osteoclasts, chondrocytes and bone marrow adipocytes. Comparison of miRNA expression during osteogenic and chondrogenic differentiation of bone marrow‐derived mesenchymal stem cells (MSCs) revealed several miRNAs with substantial difference between bone and cartilage cells. These miRNAs were predicted to target genes essentially involved in MSC differentiation. Three miRNAs, miR‐96, miR‐124 and miR‐199a, showed marked upregulation upon osteogenic, chondrogenic or adipogenic differentiation. Based on functional studies, these miRNAs regulate gene expression in MSCs and may thereby play a role in the commitment and/or differentiation of MSCs. Characterization of miRNA expression during osteoclastogenesis of mouse bone marrow cells revealed a unique expression pattern for several miRNAs. Potential targets of the differentially expressed miRNAs included many molecules essentially involved in osteoclast differentiation. These results provide novel insights into the expression and function of miRNAs during the differentiation of bone and cartilage cells. This information may be useful for the development of novel stem cell‐based treatments for skeletal defects and diseases.
Resumo:
Osteoclasts are multinucleated bone-degrading cells that undergo large changes in their polarisation and vesicular trafficking during the bone resorption cycle. Rab proteins are small GTPases that offer both temporal and spatial regulation to the transport between membranous organelles. Previously the presence and function of only few of the currently known 60 Rab proteins in osteoclasts have been reported. In this study, the expression of 26 Rab genes in bone-resorbing osteoclasts was demonstrated with gene-specific primer pairs. The further analysis of three Rab genes during human osteoclast differentiation revealed that Rab13 gene is highly induced during osteoclastogenesis. The presence of Rab13 protein in the secretory vesicles directed towards the ruffled border and in the endocytotic or transcytotic pathways in resorbing osteoclasts was excluded. The localisation of Rab13 suggests that that it is associated with a previously unknown vesicle population travelling between the trans-Golgi network and the basolateral membrane in bone resorbing osteoclasts. Rab proteins convey their functions by binding to specific effector proteins. We found a novel Rab13 interaction with endospanins-1 and -2 that are yet poorly characterised small transmembrane proteins. The Rab13 subfamily member Rab8 also bound to endospanins, while Rab10 and unrelated Rabs did not. Rab13 and endospanin-2 co-localised in perinuclear vesicles in transfected cells, demonstrating the interaction also in vivo. The inhibition of Rab13 did not interfere with the localisation of endospanin-2 nor did it affect the cell surface expression of growth hormone receptor, as has been previously described for endospanins. The physiological role of this novel protein-protein interaction thus remains to be clarified. The analysis of the transcytotic route in bone resorbing osteoclasts revealed that multiple vesicle populations arise from the ruffled border and transport the bone degradation products for exocytosis. These vesicles are directed to the functional secretory domain that is encircled by an actin-based molecular barrier. Furthermore, the transcytotic vesicles contain abundant Helix pomatia lectin binding sites and represent lipid raft concentrates. Finally, autophagosomal compartments may also be involved in the transcytosis.
Resumo:
Les domaines de transactivation (TAD) acides sont présents dans plusieurs protéines oncogéniques, virales et dans des facteurs de différenciation de cellules souches. Ces domaines acides contrôlent la transcription à travers une myriade d’interactions avec divers partenaires ce qui provoque l’activation de la transcription ou leur propre élimination. Cependant, dans la dernière décennie, de plus en plus de recherches ont démontré que les TAD possédaient un sous-domaine activation/dégradation (DAD) responsable pour une fonction d'activation de la transcription dépendante de la dégradation de la protéine. Un tel phénomène peut être accompli par plusieurs moyens tels que des modifications post-traductionnelles, l’association à des cofacteurs ou la formation d’un réseau d’interaction complexe en chaînes. Or, aucune preuve concrète n’a pu clairement démontrer le fonctionnement de la dépendance paradoxale entre ces deux fonctions sur un activateur de transcription. Le DAD, a été observé dans plusieurs facteurs de transcription incluant la protéine suppresseur de tumeur p53 et le facteur de différenciation érythrocyte EKLF. Un aspect particulier des DAD est que la composition de leur séquence d’acide aminé est fortement similaire à celle des domaines de liaison à l’ubiquitine (UBD) qui jouent un rôle clé dans le contrôle de la transcription à travers leur interaction non-covalente avec l’ubiquitine. Ainsi, dans ce mémoire, nous avons étudié la possibilité que les TAD acides soient capables d’agir comme UBD pour réguler leur fonction paradoxale à travers des interactions non-covalentes avec l’ubiquitine. L’analyse est faite en utilisant la résonnance magnétique nucléaire (RMN) ainsi qu’avec des essais fonctionnels de dégradation. En somme, cette étude amène une plus grande compréhension des protéines impliquées dans le contrôle des TAD et caractérise le tout premier exemple de TAD capable d’interagir avec l’ubiquitine.
Resumo:
In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-beta (TGF-beta) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, RMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-beta superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-beta and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. in addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.
Resumo:
Members of the transforming growth factor-beta (TGF-beta) superfamily have wide-ranging influences on many tissue and organ systems including the ovary. Two recently discovered TGF-beta superfamily members, growth/differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15; also designated as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play a key role in promoting follicle growth beyond the primary stage. Follicle growth to the small antral stage does not require gonadotrophins but appears to be driven by local autocrine/paracrine signals from both somatic cell types (granulosa and theca) and from the oocyte. TGF-beta superfamily members expressed by follicular cells and implicated in this phase of follicle development include TGF-beta, activin, GDF-9/9B and several BMPs. Acquisition of follicle-stimulating hormone (FSH) responsiveness is a pre-requisite for growth beyond the small antral stage and evidence indicates an autocrine role for granulosa-derived activin in promoting granulosa cell proliferation, FSH receptor expression and aromatase activity. Indeed, some of the effects of FSH on granulosa cells may be mediated by endogenous activin. At the same time, activin may act on theca cells to attenuate luteinizing hormone (LH)-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection appears to depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Activin may contribute to this selection process by sensitizing those follicles with the highest "activin tone" to FSH. Production of inhibin, like oestradiol, increases in selected dominant follicles, in an FSH- and insulin-like growth factor-dependent manner and may exert a paracrine action on theca cells to upregulate LH-induced secretion of androgen, an essential requirement for further oestradiol secretion by the pre-ovulatory follicle. Like activin, BMP-4 and -7 (mostly from theca), and BMP-6 (mostly from oocyte), can enhance oestradiol and inhibin secretion by bovine granulosa cells while suppressing progesterone secretion; this suggests a functional role in delaying follicle luteinization and/or atresia. Follistatin, on the other hand, may favor luteinization and/or atresia by bio-neutralizing intrafollicular activin and BMPs. Activin receptors are expressed by the oocyte and activin may have a further intrafollicular role in the terminal stages of follicle differentiation to promote oocyte maturation and developmental competence. In a reciprocal manner, oocyte-derived GDF-9/9B may act on the surrounding cumulus granulosa cells to attenuate oestradiol output and promote progesterone and hyaluronic acid production, mucification and cumulus expansion.(C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Collagen-related peptide (CRP) stimulates powerful activation of platelets through the glycoprotein VI (GPVI)-FcR gamma-chain complex. We have combined proteomics and traditional biochemistry approaches to study the proteome of CRP-activated platelets, focusing in detail on tyrosine phosphorylation. In two separate approaches, phosphotyrosine immunoprecipitations followed by 1-D-PAGE, and 2-DE, were used for protein separation. Proteins were identified by MS. By following these approaches, 96 proteins were found to undergo PTM in response to CRP in human platelets, including 11 novel platelet proteins such as Dok-1, SPIN90, osteoclast stimulating factor 1, and beta-Pix. Interestingly, the type I transmembrane protein G6f was found to be specifically phosphorylated on Tyr-281 in response to platelet activation by CRP, providing a docking site for the adapter Grb2. G6f tyrosine phoshporylation was also found to take place in response to collagen, although not in response to the G protein-coupled receptor agonists, thrombin and ADP. Further, we also demonstrate for the first time that Grb2 and its homolog Gads are tyrosine-phosphorylated in CRP-stimulated platelets. This study provides new insights into the mechanism of platelet activation through the GPVI collagen receptor, helping to build the basis for the development of new drug targets for thrombotic disease.
Resumo:
Innate immune responses against microorganisms may be mediated by Toll-like receptors (TLRs). Intestinal ischemia-reperfusion (i-I/R) leads to the translocation of bacteria and/or bacterial products such as endotoxin, which activate TLRs leading to acute intestinal and lung injury and inflammation observed upon gut trauma. Here, we investigated the role of TLR activation by using mice deficient for the common TLR adaptor protein myeloid differentiation factor 88 (MyD88) on local and remote inflammation following intestinal ischemia. Balb/c and MyD88(-/-) mice were subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). Acute neutrophil recruitment into the intestinal wall and the lung was significantly diminished in MyD88(-/-) after i-I/R, which was confirmed microscopically. Diminished neutrophil recruitment was accompanied with reduced concentration of TNF-alpha and IL-1 beta level. Furthermore, diminished microvascular leak and bacteremia were associated with enhanced survival of MyD88(-/-) mice. However, neither TNF-alpha nor IL-1 beta neutralization prevented neutrophil recruitment into the lung but attenuated intestinal inflammation upon i-I/R. In conclusion, our data demonstrate that disruption of the TLR/MyD88 pathway in mice attenuates acute intestinal and lung injury, inflammation, and endothelial damage allowing enhanced survival.
Resumo:
A presente dissertação insere-se no contexto de um projeto global de pesquisa, em desenvolvimento no GESID-PPGA/EA/UFRGS, com a cooperação de algumas universidades estrangeiras. Tal projeto tem como tema a percepção do processo decisório individual e a influência da cultura nacional e da experiência decisória. Para estudar a inter-relação destes assuntos é preciso, antes de mais nada, elaborar um conjunto de instrumentos que permitam investigar a percepção das pessoas sobre a tomada de decisão. Este é o objetivo principal do presente trabalho, que refere-se à primeira fase desse projeto global: a partir da literatura, e do conhecimento de um grupo de pesquisadores, conceber e desenvolver um conjunto de instrumentos (quantitativos e qualitativos) válidos para estudar a decisão. E ainda estabelecer uma metodologia de aplicação desse instrumental, a qual possa determinar uma seqüência (ordem) e forma de aplicação mais adequada. Para tanto, primeiramente foram definidas as 3 questões de pesquisa, que nortearam o desenvolvimento dos instrumentos de pesquisa, as quais deverão ser investigadas no contexto do projeto global de pesquisa, e que podem ser resumidas da seguinte forma: (1) Independentemente da cultura nacional ou do nível de experiência decisória dos indivíduos é possível identificar fatores comuns (passos, princípios, insights) a respeito da forma como as pessoas percebem o processo decisório individual, especialmente se tomado o modelo de processo decisório da “Racionalidade limitada” de Simon (1947) como padrão de comparação? (2) A cultura atua como fator de diferenciação na percepção do processo decisório individual? (3) A Experiência Decisória (vivência) dos indivíduos influencia a forma como eles percebem o processo decisório individual? A definição destas 3 questões de pesquisa possibilitou a concepção dos instrumentos, nos quais posteriormente foi realizada uma validação de conteúdo (por uma comissão de juízes) e de sua seqüência de aplicação (testando-se diferentes ordens), bem como a verificação da sua fidedignidade (através do Teste-reteste). Com este processo obteve-se os seguintes resultados: (1) projeto global consolidado; (2) conjunto de instrumentos de pesquisa concebido e validado; (3) seqüência de aplicação do instrumental definida e validada; (4) quadro de construtos definido fornecendo subsídios para a definição de um protocolo de análise de dados; (5) concepção de um método para verificação da "contaminação" de instrumentos de pesquisa.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)