937 resultados para Osteoblast-like Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of hypotonic shock upon membrane C1 permeability of ROS 17/2.8 osteoblast-like cells was investigated using the patch-clamp technique. Hypotonic shock produced cell swelling that was accompanied by large amplitude, outwardly rectifying, currents that were active across the entire physiological range of membrane potentials (-80 to +100 mV). At strong depolarisations (> +50 mV) the currents exhibited time-dependent inactivation that followed a monoexponential time course. The currents were anion selective and exhibited a selectivity sequence of SCN- > I > Br- > Cl- > F- > gluconate. Current activation was unaffected by inhibitors of protein kinase (A (H-89) and tyrosine kinase (tyrphostin A25), and could not be mimicked by elevation of intracellular Ca2+ or activation of protein kinase C. Similarly, disruption of actin filaments by dihydrocytochalsin B, or generation of membrane tension by dipyridamole failed to elicit significant increases in cell chloride permeability. The mechanism of current activation is as yet undetermined. The currents were effectively inhibited by the chloride channel inhibitors NPPB and DIDS but resistant to DPC. A Cl- conductance with similar characteristics was found to be present in mouse primary cultured calvarial osteoblasts. The volume-sensitive Cl- current in ROS 17/2.8 cells was inhibited by arachidonic acid in two distinct phases. A rapid block that developed within 10 s, preceding a slower developing inhibitory phase that occurred approximately 90 s after onset of arachidonate superfusion. Arachidonic acid also induced kinetic modifications of the current which were evident as an acceleration of the time-dependent· inactivation exhibited at depolarised potentials. Inhibitors of cyclo-oxygenases, lipoxygenases and cytochrome P-4S0 were ineffectual against arachidonic acid's effects sugtgesting that arachidonic acid may elicit it's effects directly. Measurements of cell volume under hypotonic conditions showed that ROS 17/2,8 cells could effectively regulate their volume, However, effective inhibitors of the volume-sensitive CI" current drastically impaired this response suggesting that physiologically this current may have a vital role in cell volume regulation, In L6 skeletal myocytes, vasopressin was found to rapidiy hyperpolarise cells. This appears to occur as the result of activation of Ca2+ -sensitive K+ channels in a process dependent upon the presence of extracellular Ca2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Human postnatal stem cells have been identified in periodontal ligaments (PDLs). In this study, the in vitro biologic properties of CD105(+) enriched cell subsets from PDLs harvested from deciduous (DePDL) and permanent (PePDL) teeth are comparatively assessed. Methods: PDL tissue was obtained from 12 teeth (six primary and six permanent) from which CD105(+) CD34(-) CD45(-) cells were isolated by magnetic cell sorting. To identify and quantitatively compare the stem cell markers, DePDL and PePDL cells were assessed for CD166 surface antigen expression by flow cytometry, real-time polymerase chain reaction, and immunostaining for Stro-1 and Oct-4, osteogenic and adipogenic differentiation, and proliferation rate by trypan blue method. Results: Magnetic cell sorting isolated cell populations containing 23.87% (+/- 11.98%) and 11.68% (+/- 6.27%) of CD105(+) expressing cells from PePDL and DePDL, respectively. Flow cytometric analysis demonstrated a higher proportion of CD105(+) cells coexpressing CD166 surface antigen in PePDL, whereas immunostaining and real-time polymerase chain reaction analysis demonstrated that both cell subsets expressed Stro-1 and Oct-4. DePDL-CD105(+) subsets were more proliferative compared to PePDL subsets, and both cell populations showed multipotential capabilities to differentiate in vitro to osteoblast/cementoblast- and adipocyte-like cells. However, a higher expression of adipogenic-related genes was observed in DePDL cells, whereas PePDL-CD105(+) cell subset presented a more homogeneous osteoblast/cementoblast response. Conclusion: These findings demonstrate that highly purified mesenchymal progenitor cell subsets can be obtained from the PDLs of both deciduous and permanent teeth, and further indicate phenotype dissimilarities that may have an impact on their clinical applications. J Periodontol 2010;81:1207-1215.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Tooth bleaching has been widely studied, mainly due to the possible undesirable effects that can be caused by this esthetic procedure. The cytotoxicity of the bleaching agents and its components to pulp cells has been demonstrated in several researches. The aim of this study was to evaluate the toxic effects of successive applications of 10% carbamide peroxide (CP) gel on odontoblast-like cells. Materials and methods. Enamel-dentin discs obtained from bovine incisors were adapted to artificial pulp chambers (APCs). The groups were formed as follows: G1: Without treatment (control group); G2: 10% carbamide peroxide, CP (five applications/one per day); G3: 10% CP (one unique application); and G4: 35% hydrogen peroxide, HP (three applications of 15 min each). After treatment, cell metabolism (MTT), alkaline phosphatase (ALP) activity and plasma membrane damage (flow cytometry) were analyzed. Results. Reductions in cell metabolism and alkaline phosphatase activity along with severe damage of the cytoplasmic membrane were noted in G2. In G3, no damage was observed, compared to the control group. Intermediary values of toxicity were obtained after 35% HP application. Conclusion. It can be concluded that one application of 10% CP did not cause toxic effects in odontoblast-like cells, but the successive application of this product promoted severe cytotoxic effects. The daily application of the bleaching agents, such as used in the at-home bleaching technique, can increase the damages caused by this treatment to the dental pulp cells. © 2013 Informa Healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Biopatologia Bucal - ICT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a disease whose genesis may include metabolic dysregulation. Cancer stem cells are attractive targets for therapeutic interventions since their aberrant expansion may underlie tumor initiation, progression, and recurrence. To investigate the actions of metabolic regulators on cancer stem cell-like cells (CSC) in CRC, we determined the effects of soybean-derived bioactive molecules and the anti-diabetes drug metformin (MET), alone and together, on the growth, survival, and frequency of CSC in human HCT116 cells. Effects of MET (60 μM) and soybean components genistein (Gen, 2 μM), lunasin (Lun, 2 μM), β-conglycinin (β-con, 3 μM), and glycinin (Gly, 3 μM) on HCT116 cell proliferation, apoptosis, and mRNA/protein expression and on the frequency of the CSC CD133(+)CD44(+) subpopulation by colonosphere assay and fluorescence-activated cell sorting/flow cytometry were evaluated. MET, Gen, and Lun, individually and together, inhibited HCT116 viability and colonosphere formation and, conversely, enhanced HCT116 apoptosis. Reductions in frequency of the CSC CD133(+)CD44(+) subpopulation with MET, Gen, and Lun were found to be associated with increased PTEN and reduced FASN expression. In cells under a hyperinsulinemic state mimicking metabolic dysregulation and without and with added PTEN-specific inhibitor SF1670, colonosphere formation and frequency of the CD133(+)CD44(+) subpopulation were decreased by MET, Lun and Gen, alone and when combined. Moreover, MET + Lun + Gen co-treatment increased the pro-apoptotic and CD133(+)CD44(+)-inhibitory efficacy of 5-fluorouracil under hyperinsulinemic conditions. Results identify molecular networks shared by MET and bioavailable soy food components, which potentially may be harnessed to increase drug efficacy in diabetic and non-diabetic patients with CRC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND CD90+ prostate cancer-associated (CP) stromal cells represent a diseased cell type found only in tumor tissue. They differ from their normal counterpart in gene expression and inductive signaling. Genetic reprogramming by induced pluripotent stem (iPS) cell technology can effectively change adult cells into stem-like cells through wholesale alteration of the gene expression program. This technology might be used to erase the abnormal gene expression of diseased cells. The resultant iPS cells would no longer express the disease phenotype, and behave like stem cells. METHODS CP stromal cells, isolated from tumor tissue of a surgically resected prostate by anti-CD90-mediated sorting and cultured in vitro, were transfected with in vitro packaged lentiviral expression vectors containing stem cell transcription factor genes POU5F1, LIN28, NANOG, and SOX2. RESULTS Alkaline phosphatase-positive iPS cells were obtained in about 3 weeks post-transfection at a frequency of 10-4. Their colony morphology was indistinguishable from that of human embryonic stem (ES) cells. Transcriptome analysis showed a virtually complete match in gene expression between the iPS and ES cells. CONCLUSIONS Genes of CP stromal cells could be fully inactivated by genetic reprogramming. As a consequence, the disease phenotype was cured. Prostate 72:14531463, 2012. (c) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoblasts express calcium channels that are thought to be involved in the transduction of extracellular signals regulating bone metabolism. The molecular identity of the pore-forming subunit (alpha 1) of L-type calcium channel(s) was determined in rat osteosarcoma UMR-106 cells, which express an osteoblast phenotype. A homology-based reverse transcriptase-polymerase chain reaction cloning strategy was employed that used primers spanning the fourth domain. Three types of cDNAs were isolated, corresponding to the alpha 1S (skeletal), alpha 1C (cardiac), and alpha 1D (neuroendocrine) isoforms. In the transmembrane segment IVS3 and the extracellular loop formed by the IVS3-S4 linker, a single pattern of mRNA splicing was found that occurs in all three types of calcium channel transcripts. Northern blot analysis revealed an 8.6-kb mRNA that hybridized to the alpha 1C probe and 4.8- and 11.7-kb mRNAs that hybridized to the alpha 1S and alpha 1D probes. Antisense oligonucleotides directed to the calcium channel alpha 1D transcript, but not those directed to alpha 1S or alpha 1C transcripts, inhibited the rise of intracellular calcium induced by parathyroid hormone. However, alpha 1D antisense oligonucleotides had no effect on the accumulation of cAMP induced by parathyroid hormone. When L-type calcium channels were activated with Bay K 8644, antisense oligonucleotides to each of the three isoforms partially inhibited the rise of intracellular calcium. The present results provide evidence for the expression of three distinct calcium channel alpha 1-subunit isoforms in an osteoblast-like cell line. We conclude that the alpha 1D isoform is selectively activated by parathyroid hormone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via beta(2)-adrenoceptor (beta(2)-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, alpha(2A)-AR and alpha(2C)-AR(alpha(2A)/alpha(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In alpha(2A)/alpha(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (mu CT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kappa B (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial beta(2)-AR mRNA expression also was similar in KO and WT littermates, whereas alpha(2A)-, alpha(2B)- and alpha(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected alpha(2A)-, alpha(2B)-, alpha(2C)- and beta(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective alpha(2)-AR agonist clonidine and to the nonspecific alpha-AR antagonist phentolamine. These findings suggest that beta(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that alpha(2)-AR signaling also may mediate the SNS actions in the skeleton. (c) 2011 American Society for Bone and Mineral Research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To examine the source of smooth muscle-like cells during vascular healing, C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) nucleated bone marrow cells from congenic (Ly 5.1) male donors. Successful repopulation (88.4 +/- 4.9%) by donor marrow was demonstrated in the female mice by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody after 4 weeks. The arteries of the female mice were then subjected to two types of insult: (1) The iliac artery was scratch-injured by 5 passes of a probe causing severe medial damage. After 4 weeks, the arterial lumen was obliterated by a cell-rich neointima, with cells containing a smooth muscle actin present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y-chromosome-specific probe. (2) In an organized arterial thrombus formed by inserting an 8-0 silk suture into the left common carotid artery, donor cells staining with alpha smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage, Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The origin of smooth muscle cells involved in vascular healing was examined. Eighteen C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) bone nucleated marrow cells from congenic (Ly 5.1) male donors. Successful repopulation by donor marrow was demonstrated after 4 weeks by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody. The iliac artery of six of the chimeric mice was scratch-injured by five passes of a probe, causing severe medial damage. After 4 weeks the arterial lumen was obliterated by a cell-rich neointima, with alpha-smooth muscle actin-containing cells present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y chromosome-specific probe. An organized arterial thrombus was formed in the remaining 12 chimeric mice by inserting an 8.0 silk suture into the left common carotid artery. Donor cells staining with alpha-smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage. Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatic progenitor cells (HPCs) are bipotential stem cells residing in human and animal livers that are able to differentiate towards the hepatocytic or cholangiocytic lineages. HPCs are present in both hepatocellular (HCC) and cholangiocellular carcinoma (CC) in humans; and a small percentage of HCC can originate from cancer stem cells. However, its distribution in canine liver tumour has not been studied. Herein, we searched for stem/progenitor cells in 13 HCC and 7 CC archived samples by immunohistochemical analysis. We found that both liver tumours presented a higher amount of K19-positive HPCs. Besides, 61.6% of HCC cases presented immature CD44-positive hepatocytes. Nevertheless, only two cases presented CD133-positive cells. As observed in humans, hepatic canine tumours presented activated HPCs, with important differentiation onto hepatocytes-like cells and minimal role of cancer stem cells on HCC. These findings reiterate the applicability of canine model in the search for new therapies before application in humans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Large bone defects represent major clinical problems in the practice of reconstructive orthopedic and craniofacial surgery. The aim of this study was to examine, through immunohistochemistry approach, the involvement of MMP-9 and CD68(+) cells during tissue remodeling in response to natural hydroxyapatite (HA) implanted in rat subcutaneous tissue. Before experimentation, forty animals were randomly distributed into two experimental groups: Group-I (Gen-Ox (TM) micro-granules) and Group-II (Gen-Ox (TM) macro-granules). Afterwards, the biopsies were collected after 10, 20, 30, and 60 days post-implantation. Our results showed that at 10 days, a low-renewal foreign body type granuloma formation was observed in most of the cases. Macrophage- and fibroblast-like cells were the predominant type of cells positively stained for MMP-9 in both groups. Once macrophage-like cells seemed to be the major source of MMP9, antibody against pan-CD68 epitope was used to correlate these findings. In agreement, MMP-9 and CD68(+) cells were distributed at the periphery and the central region of the granuloma in all experimental periods, however no staining was observed in cell contacting to material. Besides macrophages, the lysosomal glycoprotein epitope recognized by CD68 antibodies can be expressed by mast cell granules and sometimes by fibroblasts. Taken together, our results suggest that xenogenic HA promotes extracellular matrix remodeling through induction of MMP-9 activity and presence of CD68(+) cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study we report on the isolation and characterization of a nonepithelial, nontumorigenic cell type (BCC1) derived from a basal cell carcinoma from a patient. The BCC1 cells share many characteristics with dermal fibroblasts, such as the expression of vimentin, lack of expression of cytokeratins, and insensitivity to agents that cause growth inhibition and differentiation of epithelial cells; however, significant differences between BCC1 cells and fibroblasts also exist. For example, BCC1 cells are stimulated to undergo DNA synthesis in response to interferon-gamma, whereas dermal fibroblasts are not. More over, BCC1 cells overexpress the basal cell carcinoma-specific genes ptch and ptch2 . These data indicate that basal cell carcinomas are associated with a functionally distinct population of fibroblast-like cells that overexpress known tumor-specific markers (ptch and ptch2 ).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioengenharia