983 resultados para Orthogonal Cutting Model
Resumo:
We propose a simple and computationally efficient construction algorithm for two class linear-in-the-parameters classifiers. In order to optimize model generalization, a forward orthogonal selection (OFS) procedure is used for minimizing the leave-one-out (LOO) misclassification rate directly. An analytic formula and a set of forward recursive updating formula of the LOO misclassification rate are developed and applied in the proposed algorithm. Numerical examples are used to demonstrate that the proposed algorithm is an excellent alternative approach to construct sparse two class classifiers in terms of performance and computational efficiency.
Resumo:
In this brief, we propose an orthogonal forward regression (OFR) algorithm based on the principles of the branch and bound (BB) and A-optimality experimental design. At each forward regression step, each candidate from a pool of candidate regressors, referred to as S, is evaluated in turn with three possible decisions: 1) one of these is selected and included into the model; 2) some of these remain in S for evaluation in the next forward regression step; and 3) the rest are permanently eliminated from S. Based on the BB principle in combination with an A-optimality composite cost function for model structure determination, a simple adaptive diagnostics test is proposed to determine the decision boundary between 2) and 3). As such the proposed algorithm can significantly reduce the computational cost in the A-optimality OFR algorithm. Numerical examples are used to demonstrate the effectiveness of the proposed algorithm.
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria that optimizes model adequacy, or the predicted residual sums of squares (PRESS) statistic that optimizes model generalization capability, respectively. Three robust identification algorithms are introduced, i.e., combined A- and D-optimality with regularized orthogonal least squares algorithm, respectively; and combined PRESS statistic with regularized orthogonal least squares algorithm. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalization scheme in orthogonal least squares or regularized orthogonal least squares has been extended such that the new algorithms are computationally efficient. Numerical examples are included to demonstrate effectiveness of the algorithms.
Resumo:
A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.
Resumo:
We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.
Resumo:
A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.
Resumo:
The hypothesis of a low dimensional martian climate attractor is investigated by the application of the proper orthogonal decomposition (POD) to a simulation of martian atmospheric circulation using the UK Mars general circulation model (UK-MGCM). In this article we focus on a time series of the interval between autumn and winter in the northern hemisphere, when baroclinic activity is intense. The POD is a statistical technique that allows the attribution of total energy (TE) to particular structures embedded in the UK-MGCM time-evolving circulation. These structures are called empirical orthogonal functions (EOFs). Ordering the EOFs according to their associated energy content, we were able to determine the necessary number to account for a chosen amount of atmospheric TE. We show that for Mars a large fraction of TE is explained by just a few EOFs (with 90% TE in 23 EOFs), which apparently support the initial hypothesis. We also show that the resulting EOFs represent classical types of atmospheric motion, such as thermal tides and transient waves. Thus, POD is shown to be an efficient method for the identification of different classes of atmospheric modes. It also provides insight into the non-linear interaction of these modes.
Resumo:
An NIR reflectance sensor, with a large field of view and a fibre-optic connection to a spectrometer for measuring light backscatter at 980 nm, was used to monitor the syneresis process online during cheese-making with the goal of predicting syneresis indices (curd moisture content, yield of whey and fat losses to whey) over a range of curd cutting programmes and stirring speeds. A series of trials were carried out in an 11 L cheese vat using recombined whole milk. A factorial experimental design consisting of three curd stirring speeds and three cutting programmes, was undertaken. Milk was coagulated under constant conditions and the casein gel was cut when the elastic modulus reached 35 Pa. Among the syneresis indices investigated, the most accurate and most parsimonious multivariate model developed was for predicting yield of whey involving three terms, namely light backscatter, milk fat content and cutting intensity (R2 = 0.83, SEy = 6.13 g/100 g), while the best simple model also predicted this syneresis index using the light backscatter alone (R2 = 0.80, SEy = 6.53 g/100 g). In this model the main predictor was the light backscatter response from the NIR light back scatter sensor. The sensor also predicted curd moisture with a similar accuracy.
Resumo:
In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.
Resumo:
Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.
Resumo:
Red tape is not desirable as it impedes business growth. Relief from the administrative burdens that businesses face due to legislation can benefit the whole economy, especially at times of recession. However, recent governmental initiatives aimed at reducing administrative burdens have encountered some success, but also failures. This article compares three national initiatives - in the Netherlands, UK and Italy - aimed at cutting red tape by using the Standard Cost Model. Findings highlight the factors affecting the outcomes of measurement and reduction plans and ways to improve the Standard Cost Model methodology.
Resumo:
The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves. The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40. It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.
Resumo:
This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.