976 resultados para Oriented texture classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the hydrophobicity is usually an arduous parameter to be determined in the field, it has been pointed out as a good option to monitor aging of polymeric outdoor insulators. Concerning this purpose, digital image processing of photos taken from wet insulators has been the main technique nowadays. However, important challenges on this technique still remain to be overcome, such as; images from non-controlled illumination conditions can interfere on analyses and no existence of standard surfaces with different levels of hydrophobicity. In this paper, the photo image samples were digitally filtered to reduce the illumination influence, and hydrophobic surface samples were prepared from wetting silicon surfaces with solution of water-alcohol. Furthermore norevious studies triying to quantify and relate these properties in a mathematical function were found, that could be used in the field by the electrical companies. Based on such considerations, high quality images of countless hydrophobic surfaces were obtained and three different image processing methodologies, the fractal dimension and two Haralick textures descriptors, entropy and homogeneity, associated with several digital filters, were compared. The entropy parameter Haralick's descriptors filtered with the White Top-Hat filter presented the best result to classify the hydrophobicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouligand- Minkowski descriptors. We decompose the original image recursively into four equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by concatenating such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel technique achieves better results than classical and state-of-the-art texture descriptors, such as Local Binary Patterns, Gabor-wavelets and co-occurrence matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates two distinct research topics. The main topic (Part I) is the computational modelling of cardiomyocytes derived from human stem cells, both embryonic (hESC-CM) and induced-pluripotent (hiPSC-CM). The aim of this research line lies in developing models of the electrophysiology of hESC-CM and hiPSC-CM in order to integrate the available experimental data and getting in-silico models to be used for studying/making new hypotheses/planning experiments on aspects not fully understood yet, such as the maturation process, the functionality of the Ca2+ hangling or why the hESC-CM/hiPSC-CM action potentials (APs) show some differences with respect to APs from adult cardiomyocytes. Chapter I.1 introduces the main concepts about hESC-CMs/hiPSC-CMs, the cardiac AP, and computational modelling. Chapter I.2 presents the hESC-CM AP model, able to simulate the maturation process through two developmental stages, Early and Late, based on experimental and literature data. Chapter I.3 describes the hiPSC-CM AP model, able to simulate the ventricular-like and atrial-like phenotypes. This model was used to assess which currents are responsible for the differences between the ventricular-like AP and the adult ventricular AP. The secondary topic (Part II) consists in the study of texture descriptors for biological image processing. Chapter II.1 provides an overview on important texture descriptors such as Local Binary Pattern or Local Phase Quantization. Moreover the non-binary coding and the multi-threshold approach are here introduced. Chapter II.2 shows that the non-binary coding and the multi-threshold approach improve the classification performance of cellular/sub-cellular part images, taken from six datasets. Chapter II.3 describes the case study of the classification of indirect immunofluorescence images of HEp2 cells, used for the antinuclear antibody clinical test. Finally the general conclusions are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we compare the performance of two image classification paradigms (object- and pixel-based) for creating a land cover map of Asmara, the capital of Eritrea and its surrounding areas using a Landsat ETM+ imagery acquired in January 2000. The image classification methods used were maximum likelihood for the pixel-based approach and Bhattacharyya distance for the object-oriented approach available in, respectively, ArcGIS and SPRING software packages. Advantages and limitations of both approaches are presented and discussed. Classifications outputs were assessed using overall accuracy and Kappa indices. Pixel- and object-based classification methods result in an overall accuracy of 78% and 85%, respectively. The Kappa coefficient for pixel- and object-based approaches was 0.74 and 0.82, respectively. Although pixel-based approach is the most commonly used method, assessment and visual interpretation of the results clearly reveal that the object-oriented approach has advantages for this specific case-study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study is to define an optimally performing computer-aided diagnosis (CAD) architecture for the classification of liver tissue from non-enhanced computed tomography (CT) images into normal liver (C1), hepatic cyst (C2), hemangioma (C3), and hepatocellular carcinoma (C4). To this end, various CAD architectures, based on texture features and ensembles of classifiers (ECs), are comparatively assessed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceanographically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m × 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45-70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5-7 km width, build an approx. 40-70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed analysis of the texture, matrix, and elements of the microfacies from the carbonate sequence recovered in ODP Hole 639D resulted in a typological classification of 10 major microfacies types and their variants. The variations in distribution and succession of type microfacies allowed us to divide the carbonate sequence into 12 facies-defined subunits. Based on the analyzed characteristics and their relations, we also propose a paleoenvironmental interpretation involving a mixed carbonate/terrigenous ramp model instead of the previous, classical zoned carbonate platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing information from spaceborne and airborne platforms continues to provide valuable data for different environmental monitoring applications. In this sense, high spatial resolution im-agery is an important source of information for land cover mapping. For the processing of high spa-tial resolution images, the object-based methodology is one of the most commonly used strategies. However, conventional pixel-based methods, which only use spectral information for land cover classification, are inadequate for classifying this type of images. This research presents a method-ology to characterise Mediterranean land covers in high resolution aerial images by means of an object-oriented approach. It uses a self-calibrating multi-band region growing approach optimised by pre-processing the image with a bilateral filtering. The obtained results show promise in terms of both segmentation quality and computational efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histograms of Oriented Gradients (HoGs) provide excellent results in object detection and verification. However, their demanding processing requirements bound their applicability in some critical real-time scenarios, such as for video-based on-board vehicle detection systems. In this work, an efficient HOG configuration for pose-based on-board vehicle verification is proposed, which alleviates both the processing requirements and required feature vector length without reducing classification performance. The impact on classification of some critical configuration and processing parameters is in depth analyzed to propose a baseline efficient descriptor. Based on the analysis of its cells contribution to classification, new view-dependent cell-configuration patterns are proposed, resulting in reduced descriptors which provide an excellent balance between performance and computational requirements, rendering higher verification rates than other works in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quasielastic incoherent neutron scattering from hydrogen atoms, which are distributed nearly homogeneously in biological molecules, allows the investigation of diffusive motions occurring on the pico- to nanosecond time scale. A quasielastic incoherent neutron scattering study was performed on the integral membrane protein bacteriorhodopsin (BR), which is a light-driven proton pump in Halobacterium salinarium. BR is embedded in lipids, forming patches in the cell membrane of the organism, which are the so called purple membranes (PMs). Measurements were carried out at room temperature on oriented PM-stacks hydrated at two different levels (low hydration, h = 0.03 g of D2O per g of PM; high hydration, h = 0.28 g of D2O per g of PM) using time-of-flight spectrometers. From the measured spectra, different diffusive components were identified and analyzed with respect to the influence of hydration. This study supports the idea that a decrease in hydration results in an appreciable decrease in internal molecular flexibility of the protein structure. Because it is known from studies on the function of BR that the pump activity is reduced if the hydration level of the protein is insufficient, we conclude that the observed diffusive motions are essential for the function of this protein. A detailed analysis and classification of the different kinds of diffusive motions, predominantly occurring in PMs under physiological conditions, is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Java programming language supports concurrency. Concurrent programs are hard to test due to their inherent non-determinism. This paper presents a classification of concurrency failures that is based on a model of Java concurrency. The model and failure classification is used to justify coverage of synchronization primitives of concurrent components. This is achieved by constructing concurrency flow graphs for each method call. A producer-consumer monitor is used to demonstrate how the approach can be used to measure coverage of concurrency primitives and thereby assist in determining test sequences for deterministic execution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In emergency situations, where time for blood transfusion is reduced, the O negative blood type (the universal donor) is administrated. However, sometimes even the universal donor can cause transfusion reactions that can be fatal to the patient. As commercial systems do not allow fast results and are not suitable for emergency situations, this paper presents the steps considered for the development and validation of a prototype, able to determine blood type compatibilities, even in emergency situations. Thus it is possible, using the developed system, to administer a compatible blood type, since the first blood unit transfused. In order to increase the system’s reliability, this prototype uses different approaches to classify blood types, the first of which is based on Decision Trees and the second one based on support vector machines. The features used to evaluate these classifiers are the standard deviation values, histogram, Histogram of Oriented Gradients and fast Fourier transform, computed on different regions of interest. The main characteristics of the presented prototype are small size, lightweight, easy transportation, ease of use, fast results, high reliability and low cost. These features are perfectly suited for emergency scenarios, where the prototype is expected to be used.