985 resultados para Optimized application
Resumo:
Zones of mixing between shallow groundwaters of different composition were unravelled by two-way regionalized classification, a technique based on correspondence analysis (CA), cluster analysis (ClA) and discriminant analysis (DA), aided by gridding, map-overlay and contouring tools. The shallow groundwaters are from a granitoid plutonite in the Funda o region (central Portugal). Correspondence analysis detected three natural clusters in the working dataset: 1, weathering; 2, domestic effluents; 3, fertilizers. Cluster analysis set an alternative distribution of the samples by the three clusters. Group memberships obtained by correspondence analysis and by cluster analysis were optimized by discriminant analysis, gridded memberships as follows: codes 1, 2 or 3 were used when classification by correspondence analysis and cluster analysis produced the same results; code 0 when the grid node was first assigned to cluster 1 and then to cluster 2 or vice versa (mixing between weathering and effluents); code 4 in the other cases (mixing between agriculture and the other influences). Code-3 areas were systematically surrounded by code-4 areas, an observation attributed to hydrodynamic dispersion. Accordingly, the extent of code-4 areas in two orthogonal directions was assumed proportional to the longitudinal and transverse dispersivities of local soils. The results (0.7-16.8 and 0.4-4.3 m, respectively) are acceptable at the macroscopic scale. The ratios between longitudinal and transverse dispersivities (1.2-11.1) are also in agreement with results obtained by other studies.
Resumo:
Turnera diffusa Willd. var. afrodisiaca (Ward) Urb. (syn. T. aphrodisiaca) belongs to the family of Turneraceae and is an aromatic plant growing wild in the subtropical regions of America and Africa. It is widely used in the traditional medicine as e.g. anti-cough, diuretic, and aphrodisiac agent. This work presents a 3 min chromatographic analysis using low-pressure (LP) gas chromatography (GC)-ion-trap (IT) mass spectrometry (MS). The combination of a deactivated 0.6 m x 0.10 mm i.d., restrictor with a wide-bore CP-Wax 52 capillary column (10 m x 0.53 mm i.d., 1 mum) reduces the analysis time by a factor of 3-7 in comparison to the use of a conventional narrow bore column. Chromatographic conditions have been optimized to achieve the fastest separation with the highest signal/noise ratio in MS detection. These results allow fast and reliable quality control of the essential oil to be achieved. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Grinding - the final machining process of a workpiece - requires large amounts of cutting fluids for the lubrication, cooling and removal of chips. These fluids are highly aggressive to the environment. With the technological advances of recent years, the worldwide trend is to produce increasingly sophisticated components with very strict geometric and dimensional tolerances, good surface finish, at low costs, and particularly without damaging the environment. The latter requirement can be achieved by recycling cutting fluids, which is a costly solution, or by drastically reducing the amount of cutting fluids employed in the grinding process. This alternative was investigated here by varying the plunge velocity in the plunge cylindrical grinding of ABNT D6 steel, rationalizing the application of two cutting fluids and using a superabrasive CBN (cubic boron nitride) grinding wheel with vitrified binder to evaluate the output parameters of tangential cutting force, acoustic emission, roughness, roundness, tool wear, residual stress and surface integrity, using scanning electron microscopy (SEM) to examine the test specimens. The performance of the cutting fluid, grinding wheel and plunge velocity were analyzed to identify the best machining conditions which allowed for a reduction of the cutting fluid volume, reducing the machining time without impairing the geometric and dimensional parameters, and the surface finish and integrity of the machined components.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Extracellular xylanase and β-xylosidase production by a Penicillium janczewskii strain were investigated in liquid cultures with xylan from oat spelts under different physical and chemical conditions. The selected conditions for optimized production of xylanase and β-xylosidase were 7 days, pH 6.5, at 30 °C and 8 days, pH 5.0, at 25 °C, respectively. The xylanase exhibited optimal activity in pH 5.0 at 50 °C and the β- xylosidase in pH 4.0 at 75 °C. The xylanase was more stable at pH 6.0 to 9.5, while the β-xylosidase remained stable at pH ranging from 1.6 to 5.5. The xylanase half-life (T50) at 40, 50, and 60 °C was 183, 15, and 3 min, respectively. β-xylosidase half-life was 144, 8, and 4 min at 50, 65, and 75 °C, respectively. When applied to the biobleaching of Eucalyptus kraft pulp, xylanase dosages of 2 and 4 U/g dried pulp reduced, respectively, kappa number by 3.0 and 3.3 units after 1 h treatment, demonstrating that the use of P. janczewskii xylanases in this process is quite promising. The pulp viscosity was not altered, confirming the absence of cellulolytic enzymes in the fungal extract.
Resumo:
The effects of soybean and castorbean meals were evaluated separately, and in combinations at different ratios, as substrates for lipase production by Botryosphaeria ribis EC-01 in submerged fermentation using only distilled water. The addition of glycerol analytical grade (AG) and glycerol crude (CG) to soybean and castorbean meals separately and in combination, were also examined for lipase production. Glycerol-AG increased enzyme production, whereas glycerol-CG decreased it. A 24 factorial design was developed to determine the best concentrations of soybean meal, castorbean meal, glycerol-AG, and KH2PO4 to optimize lipase production by B. ribis EC-01. Soybean meal and glycerol-AG had a significant effect on lipase production, whereas castorbean meal did not. A second treatment (22 factorial design central composite) was developed, and optimal lipase production (4,820 U/g of dry solids content (ds)) was obtained when B. ribis EC-01 was grown on 0.5 % (w/v) soybean meal and 5.2 % (v/v) glycerol in distilled water, which was in agreement with the predicted value (4,892 U/g ds) calculated by the model. The unitary cost of lipase production determined under the optimized conditions developed ranged from US$0.42 to 0.44 based on nutrient costs. The fungal lipase was immobilized onto Celite and showed high thermal stability and was used for transesterification of soybean oil in methanol (1:3) resulting in 36 % of fatty acyl alkyl ester content. The apparent K m and V max were determined and were 1.86 mM and 14.29 μmol min -1 mg-1, respectively. © 2013 Springer Science+Business Media New York.
Resumo:
An Advanced Oxidation Process (AOPs) was carried out in this study with the use of immobilized ZnO and solar/UV as an energy source to degrade dairy wastewater. The semibatch reactor system consisted of metal plate of 800 × 250 mm and a glass tank. The reaction time was of 3 h for 3 L of dairy wastewater. Experiments were performed based on a surface response methodology in order to optimize the photocatalytic process. Degradation was measured in percentage terms by total organic carbon (TOC). The entry variables were ZnO coating thickness and pH, using three levels of each variable. The optimized results showed a TOC degradation of 31.7%. Optimal parameters were metal-plate coating of 100 m of ZnO and pH of 8.0. Since solar/UV is a constant and free energy source in most tropical countries, this process tends to suggest an interesting contribution in dairy wastewater treatment, especially as a pretreatment and the optimal conditions to guarantee a better efficiency of the process. © 2013 Gisella R. Lamas Samanamud et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Interest in the electronic properties of carbon nanotubes has increased in recent years. These materials can be used in the development of electrochemical sensors for the measurement and monitoring of analytes of environmental interest, such as pharmaceuticals, dyes, and pesticides. This work describes the use of homemade screen-printed electrodes modified with multi-walled carbon nanotubes (MWCNT) for the electrochemical detection of the fungicide thiram. The electrochemical characteristics of the proposed system were evaluated using cyclic voltammetry, with investigation of the electrochemical behavior of the sensor in the presence of the analyte, and estimation of electrochemical parameters including the diffusion coefficient, electron transfer coefficient (α), and number of electrons transferred in the catalytic electro-oxidation. The sensor response was optimized using amperometry. The best sensor performance was obtained in 0.1 mol L-1 phosphate buffer solution at pH 8.0, where a detection limit of 7.9 x 10-6 mol L-1 was achieved. Finally, in order to improve the sensitivity of the sensor, square wave voltammetry (SWV) was used for thiram quantification, instead of amperometry. Using SWV, a response range for thiram from 9.9 x 10-6 to 9.1 x 10-5 mol L-1 was obtained, with a sensitivity of 30948 µA mol L-1, and limits of detection and quantification of 1.6 x 10-6 and 5.4 x 10-6 mol L-1, respectively. The applicability of this efficient new alternative methodology for thiram detection was demonstrated using analyses of enriched soil samples.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method for the simultaneous quantification of lycopene, beta-carotene, retinol and alpha-tocopherol by high-performance liquid chromatography (HPLC) with Vis/fluorescence detection with isocratic elution was optimized and validated. The method consists of a rapid and simple liquid-liquid extraction procedure and a posterior quantification of extracted supernatants by HPLC. Aliquots of plasma were stored at -20 degrees C for three months for stability study. The methodology was applied to samples from painters and individuals not exposed to paints (n = 75). The assay was linear for all vitamins (r > 0.99). Intra-and inter-run precisions were obtained with coefficient of variation smaller than 5%. The accuracies ranged from 0.29 to -5.80% and recoveries between 92.73 and 101.97%. Plasma samples and extracted supernatants were stable for 60 days at -20 degrees C. A significant decrease of lycopene, beta-carotene and retinol concentrations in plasma from exposed individuals compared to non-exposed individuals (p < 0.05) was observed. The method is simple, reproducible, precise, accurate and sensitive, and can be routinely utilized in clinical laboratories.
Resumo:
A method for the simultaneous quantification of lycopene, β-carotene, retinol and α-tocopherol by high-performance liquid chromatography (HPLC) with Vis/fluorescence detection with isocratic elution was optimized and validated. The method consists of a rapid and simple liquid-liquid extraction procedure and a posterior quantification of extracted supernatants by HPLC. Aliquots of plasma were stored at -20°C for three months for stability study. The methodology was applied to samples from painters and individuals not exposed to paints (n = 75). The assay was linear for all vitamins (r > 0.99). Intra- and inter-run precisions were obtained with coefficient of variation smaller than 5%. The accuracies ranged from 0.29 to -5.80% and recoveries between 92.73 and 101.97%. Plasma samples and extracted supernatants were stable for 60 days at -20°C. A significant decrease of lycopene, β-carotene and retinol concentrations in plasma from exposed individuals compared to non-exposed individuals (p < 0.05) was observed. The method is simple, reproducible, precise, accurate and sensitive, and can be routinely utilized in clinical laboratories.