850 resultados para Optimal speed
Resumo:
Most models currently used to determine optimal foreign reserve holdings take the level of international debt as given. However, given the sovereign`s willingness-to-pay incentive problems, reserve accumulation may reduce sustainable debt levels. In addition, assuming constant debt levels does not allow addressing one of the puzzles behind using reserves as a means to avoid the negative effects of crisis: why do not sovereign countries reduce their sovereign debt instead? To study the joint decision of holding sovereign debt and reserves, we construct a stochastic dynamic equilibrium model calibrated to a sample of emerging markets. We obtain that the reserve accumulation does not play a quantitatively important role in this model. In fact, we find the optimal policy is not to hold reserves at all. This finding is robust to considering interest rate shocks, sudden stops, contingent reserves and reserve dependent output costs. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The fabrication of heavy-duty printer heads involves a great deal of grinding work. Previously in the printer manufacturing industry, four grinding procedures were manually conducted in four grinding machines, respectively. The productivity of the whole grinding process was low due to the long loading time. Also, the machine floor space occupation was large because of the four separate grinding machines. The manual operation also caused inconsistent quality. This paper reports the system and process development of a highly integrated and automated high-speed grinding system for printer heads. The developed system, which is believed to be the first of its kind, not only produces printer heads of consistently good quality, but also significantly reduces the cycle time and machine floor space occupation.
Resumo:
High removal rate (up to 16.6 mm(3)/s per mm) grinding of alumina and alumina-titania was investigated with respect to material removal and basic grinding parameters using a resin-bond 160 mu m grit diamond wheel at the speeds of 40 and 160 m/s, respectively. The results show that the material removal for the single-phase polycrystalline alumina and the two-phase alumina-titania composite revealed identical mechanisms of microfracture and grain dislodgement under the grinding conditioned selected. There were no distinct differences in surface roughness and morphology for both materials ground at either conventional or high speed. An increase in material removal rate did not necessarily worsen the surface toughness for the two materials at both speeds. Also the grinding forces for the two ceramics demonstrated similar characteristics at any grinding speeds and specific removal rates. Both normal and tangential grinding forces and their force ratios at the high speed were lower than those at the conventional speed, regardless of removal rates. An increase in specific removal rate caused more rapid increases in normal and tangential forces obtained at the conventional grinding speed than those at the high speed. Furthermore, it is found that the high speed grinding at all the removal rates exerted a great amount of coolant-induced normal forces in grinding zone, which were 4-6 times higher than the pure normal grinding forces. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Dynamic foam films have been investigated using an improved experimental set-up with a CCD high-speed linescan camera in conjunction with the Scheludko micro-interferometric cell for studying the drainage and rupture of liquid foam films. The improved experimental set-up increased the sensibility of detection of the local thickness heterogeneities and domains during the film evolution. The evolution of the foam films up to the formation of black spots was recorded in the time intervals of 50ms. The wavelengths of the propagating surface waves and their frequencies were determined experimentally. The experimental results show that the current quasi-static hydrodynamic theory does not properly describe the wave dynamics with inter-domain channels. However, the thermodynamic condition for formation of black spots in the foam films was met by the experimental results. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We explore the task of optimal quantum channel identification and in particular, the estimation of a general one-parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.
Resumo:
The sensitivity of several short tests of speed of information processing to the effects of mild head injury in rugby league football was investigated. The measures used were the Symbol Digit Modalities Test, the Digit Symbol Substitution Test, and the Speed of Comprehension Test. Two studies were conducted, the first to examine the effect of practice, the second to determine sensitivity to cognitive impairment immediately following injury. The first study established alternate form equivalence and demonstrated that performance on the Speed of Comprehension and Digit Symbol Substitution tests improved with practice, whereas the Symbol Digit Modalities test remained stable. A second study of 10 players who subsequently sustained mild head injuries showed that measures of speed of information processing were sensitive to impairment in the postacute phase, whereas an untimed task of word recognition (Spot-the-Word) was not. Speed of Comprehension was more sensitive to postinjury impairment than either the Digit Symbol Substitution or Symbol Digit Modalities tests. A repeated baseline assessment before injury using the higher score to reflect a player's potential, allowed measurement of impaired performance on sensitive tests.
Resumo:
Background-In the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial, an initial strategy of coronary revascularization and optimal medical treatment (REV) compared with an initial optimal medical treatment with the option of subsequent revascularization (MED) did not reduce all-cause mortality or the composite of cardiovascular death, myocardial infarction, and stroke in patients with type 2 diabetes mellitus and stable ischemic heart disease. In the same population, we tested whether the REV strategy was superior to the MED strategy in preventing worsening and new angina and subsequent coronary revascularizations. Methods and Results-Among the 2364 men and women (mean age, 62.4 years) with type 2 diabetes mellitus, documented coronary artery disease, and myocardial ischemia, 1191 were randomized to the MED and 1173 to the REV strategy preselected in the percutaneous coronary intervention (796) and coronary artery bypass graft (377) strata. Compared with the MED strategy, the REV strategy at the 3-year follow-up had a lower rate of worsening angina (8% versus 13%; P < 0.001), new angina (37% versus 51%; P = 0.001), and subsequent coronary revascularizations (18% versus 33%; P < 0.001) and a higher rate of angina-free status (66% versus 58%; P = 0.003). The coronary artery bypass graft stratum patients were at higher risk than those in the percutaneous coronary intervention stratum, and had the greatest benefits from REV. Conclusions-In these patients, the REV strategy reduced the occurrence of worsening angina, new angina, and subsequent coronary revascularizations more than the MED strategy. The symptomatic benefits were observed particularly for high-risk patients.
Resumo:
Quantum information theory, applied to optical interferometry, yields a 1/n scaling of phase uncertainty Delta phi independent of the applied phase shift phi, where n is the number of photons in the interferometer. This 1/n scaling is achieved provided that the output state is subjected to an optimal phase measurement. We establish this scaling law for both passive (linear) and active (nonlinear) interferometers and identify the coefficient of proportionality. Whereas a highly nonclassical state is required to achieve optimal scaling for passive interferometry, a classical input state yields a 1/n scaling of phase uncertainty for active interferometry.
Resumo:
Rapid shoulder movement is preceded by contraction of the abdominal muscles to prepare the body for the expected disturbance to postural equilibrium and spinal stability provoked by the reactive forces resulting from the movement. The magnitude of the reactive forces is proportional to the inertia of the limb. The aim of the study was to investigate if changes in the reaction time latency of the abdominal muscles was associated with variation in the magnitude of the reactive forces resulting from variation in limb speed. Fifteen participants performed shoulder flexion at three different speeds (fast, natural and slow). The onset of EMG of the abdominal muscles, erector spinae and anterior deltoid (AD) was recorded using a combination of fine-wire and surface electrodes. Mean and peak velocity was recorded for each limb movement speed for five participants. The onset of transversus abdominis (TrA) EMG preceded the onset of AD in only the fast movement condition. No significant difference in reaction time latency was recorded between the fast and natural speed conditions for all muscles. The reaction time of each of the abdominal muscles relative to AD was significantly delayed with the slow movement compared to the other two speeds. The results indicate that the reaction time latency of the trunk muscles is influenced by limb inertia only with limb movement below a threshold velocity.
Resumo:
Using the method of quantum trajectories we show that a known pure state can be optimally monitored through time when subject to a sequence of discrete measurements. By modifying the way that we extract information from the measurement apparatus we can minimize the average algorithmic information of the measurement record, without changing the unconditional evolution of the measured system. We define an optimal measurement scheme as one which has the lowest average algorithmic information allowed. We also show how it is possible to extract information about system operator averages from the measurement records and their probabilities. The optimal measurement scheme, in the limit of weak coupling, determines the statistics of the variance of the measured variable directly. We discuss the relevance of such measurements for recent experiments in quantum optics.
Resumo:
While explaining a large proportion of any variance, accounts of the speed and accuracy of targetting movements use techniques (e.g., log transforms) that typically reduce variability before ''explaining'' the data. Therefore the predictive power of such accounts are important. We consider whether Plamondon's model can account for kinematics of targetting movements of clinical populations.
Resumo:
Fuzzy Bayesian tests were performed to evaluate whether the mother`s seroprevalence and children`s seroconversion to measles vaccine could be considered as ""high"" or ""low"". The results of the tests were aggregated into a fuzzy rule-based model structure, which would allow an expert to influence the model results. The linguistic model was developed considering four input variables. As the model output, we obtain the recommended age-specific vaccine coverage. The inputs of the fuzzy rules are fuzzy sets and the outputs are constant functions, performing the simplest Takagi-Sugeno-Kang model. This fuzzy approach is compared to a classical one, where the classical Bayes test was performed. Although the fuzzy and classical performances were similar, the fuzzy approach was more detailed and revealed important differences. In addition to taking into account subjective information in the form of fuzzy hypotheses it can be intuitively grasped by the decision maker. Finally, we show that the Bayesian test of fuzzy hypotheses is an interesting approach from the theoretical point of view, in the sense that it combines two complementary areas of investigation, normally seen as competitive. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a (192)Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the (192)Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the 192Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0 +/- 1.0 and 17.3 +/- 1:2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of vertical bar a vertical bar = 113 cm/s(2). In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors` knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3483780]