978 resultados para Operação de baixo carbono
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
The increasing concerns about the health and safety is significantly changing the costeffective management of labor, also becoming an important tool in the pursuit of quality. In this context the present work makes a studyin a steel mill, to determine an action plan with the goal of reducing the risk of injury during handling and setting up bearings in a workshop of rolling mill rolls. The study is structured through the Method of Analysis and Troubleshooting, and quality tools. The definition of the action plan has brought lowcost measures that seek to solve the problem, eliminating the possibility of fatality or inability to employees
Resumo:
Technology is growing interest in the use of composites, due to the requirement of lighter materials and more resistant, factors essential to meet the project specifications and reduce the operational cost. In the production of high performance structural composites, considering the aerospace criteria, the domestic industry has shown interest in the process of resin transfer molding (RTM) for reproducibility and low cost. This process is suitable for producing components of polymeric composites with relatively simple geometries, consistent thicknesses, high quality finish with no size limitations. The objective of this work was machined carbon steel to make a matched-die tooling for RTM and produce two composite plates of epoxy resin and carbon fiber fabric with and without induced discontinuities, which were compared towards their impregnation with ultrasound, their properties via tensile tests and thermal analysis. In ultrasonic inspection, it was found good impregnation of the preform of both composites. In the thermal analysis it was possible to check the degradation temperature of the composites, the glass transition temperature and it was found that the composites showed no effective cure cycles, but presented good performance in the tensile test when compared with aluminum alloy 7050 T7451 . The results showed that the injection strategy was appropriate since the laminate exhibited a good quality for the proposed application
Resumo:
The monolithic glassy carbon is a carbonaceous material, isotropic, non graphitizable obtained by means of carbonization of resins up to 1000 °C. The good physicochemical properties make this material applied in several areas such as aerospace, medicine, electronics, chemistry, among others. It has generally been processed from the use of phenolic and furfuryl alcohol resins. These resins have high crosslink density and high fixed carbon content and are therefore widely applied in aerospace. The combination phenol / furfuryl alcohol resins search for obtaining the most suitable process for the glass-like carbon processing with phenolic resins currently available and of lower cost and easier to synthesize than the furfuryl alcohol resin. The main objective of this work is to obtain a phenol-furfuryl resin with high fixed carbon content combined with low porosity of the material. Different synthesis routes have been adopted along with thermal analysis techniques, FTIR and image analysis. The resin obtained through partial synthesis process presented the characteristics sought in this work
Resumo:
After confirming the high specific mechanical properties of composite materials by scientific studies conducted over the last decades, one of the challenges of this new class of materials is the ability to achieve mass production at a more affordable cost, which has become indispensable. The Resin Transfer Molding (RTM) is an excellent method for manufacturing composite materials. Despite being a process widely used by international companies in the production of high performance structural composites, only a short time the national aviation industry has shown interest in implementing this type of processing to more complex structures and greater structural responsibility. In aeronautical projects, the reproducibility and the relative low cost of this process, several studies have been performed in Brazil for learning and perfecting this technique. This process is suitable for producing polymer components both simple as complex geometry, and allows to achieve consistent thickness, with high quality finish and without limiting range. Polymeric composite components for the high mechanical stress applications such as aircraft structures, satellites, etc., require a strict control of volume fractions of the composite constituents, beyond the knowledge of their mechanical and thermal properties. Therefore, in this experimental work degree study on the mechanical, thermal and of porosity composites processed by RTM processed characterization was performed. This characterization was performed targeting a possible aerospace application of this composite material. For the production of composites, process equipment (RTM RTM injector Radius 2100cc) was used. The processed carbono/epoxy composites were characterized via flexure tests mechanically and thermally analysis via DMA, DSC and TGA. To determine the volume fraction of fibers, the composite samples were analyzed via matrix digestion (ASTM D3171) ... (Complete abstract click electronic access below)
Resumo:
This paper aims to present the design, development and construction of a reducer / multiplier speeds low cost, sturdy and easy operation. The beginning of the project was given to research on issues related to mechanisms and machine elements, and these theories of fundamental importance in the development of items of equipment which, together with the aid of AutoCAD software, enabled the construction of it. Parallel to the sizing of equipment, were also investigated and taken into account the costs of materials used in the project. Made to mount the reducer / multiplier speeds it was at the evidence through experiments involving the use of torque wrench, tachometer and weights, getting proven applicability in situations that are small or medium loads required
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Engenharia de Produção - FEB
Resumo:
O processo de retificação é considerado um dos últimos na cadeia de produção de peças de precisão. Assim, é essencial ter um sistema de monitoramento confiável para este processo. Neste trabalho é proposto um sistema de medição de vibração, rápido e versátil, baseado na plataforma de prototipagem eletrônica de hardware livre Arduino, com objetivo de monitorar em tempo real o processo de retificação plana, especialmente no que diz respeito à condição da peça retificada. Para este trabalho ensaios experimentais foram realizados numa máquina retificadora plana, empregando um rebolo de óxido de alumínio e uma peça de aço ABNT 1020. Por meio de um sensor piezelétrico de PZT (Pb-Lead Zirconate Titanate) de baixo custo, instalado junto à peça e conectado a uma das portas analógicas do hardware, foi possível medir o sinal de vibração durante o processo de retificação. Verificou-se que, a medida com que o rebolo perdia sua capacidade de corte, em função das consecutivas passadas sobre a peça, ocorria também uma significativa diminuição dos valores médios do sinal de vibração. Tal diminuição do sinal de vibração pode indicar o momento que o rebolo deve ser dressado, permitindo monitorar a qualidade superficial da peça durante o processo de retificação, evitando danos como é o caso da queima superficial. O princípio de operação e as principais características dessa técnica foram investigados, bem como algumas de suas limitações práticas.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper deals with the homologation process for obtaining carbon credits through the Clean Development Mechanism (CDM), that regulates the greenhouse gases reductions under the rules of the Kyoto Protocol. The CDM evaluates projects through a project cycle, which begins with the preparation of the Project Design Document (PDD) until the project certification to receive Certified Emission Reductions (CERs), popularly known as carbon credits. This study analyzed the implementation of the system Burner Recorder System for Low Flows of Biogas (QRBBV), developed by Marcelino Junior & Godoy (2009), in an eco-friendly wastewater treatment mini-plant (miniEETERA), built at the site of UNESP - Guaratinguetá SP. The QRBBV system is low cost and high reliability, developed to burn the methane generated at sites of low and variable production of biogas, which is not economically justified their energy recovery. Currently, almost all wastewater generated at the site of the campus is being treated by miniEETERA and, as a result, the biogas originated by this activity is being released into the atmosphere. Therefore, the project activity aims to capture and burn the biogas generated by miniEETERA, reducing the negative effects caused by the methane emissions into the atmosphere and, thus, claim to receive carbon credits. This work aimed to demonstrate the project applicability under CDM through the study and preparation of the PDD, as well as an analysis of the entire project cycle required for homologation. The result of the work obtained an estimate of only 20 CERs per year and proved to be economically unviable for approval through the CDM, since the spending with the approval process would not be compensated with the sale of CERs, mainly due the low carbon price in the world market. From an environmental standpoint, the project is perfectly... (Complete abstract click electronic access below)