953 resultados para Open Reading Frame


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A putative chitinase gene was identified within the fragment EcoRI-K of the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HearNPV, also called HaSNPIV) genome. The open reading frame (ORF) contains 1713 nucleotides (nt) and encodes a protein of 570 amino acids (aa) with a predicted molecular weight of 63.6 kDa. Transcription started at about 18 h post infection (p.i.) and the protein was first detected at 20 h p.i. The times of transcription and expression are characteristic of a late baculovirus gene. 5' and 3' RACE indicated that transcription was initiated from the adenine residue located at -246 nt upstream from the ATG start site and the poly (A) tail was added at 267 nt downstream from the stop codon. This is the first report on the molecular characterization of a chitinase from a single nucleocapsid NPV. The phylogeny of baculoviral chitinase genes were extensively examined in comparison with chitinases derived from bacteria, fungi, nematode, actinomycetes, viruses, insects and mammals. Neighbor-joining and most parsimony analyses showed that the baculoviral chitinases were clustered exclusively within gamma-proteobacteria. Our results strongly suggest that baculoviruses acquired their chitinase genes from bacteria. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferon (IFN) can induce an antiviral state via interferon-regulatory transcription factors (IRFs), which bind to and control genes directed by the interferon-stimulated response element (ISRE). Here we describe a fish IRF, termed CaIRF7, cloned from a subtractive cDNA library which is constructed with mRNAs obtained from crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells infected by UV-inactivated GCHV and mock-infected cells. CaIRF7 cDNA was found to be 1816 bp in length, with a 42 bp 5' UTR and a 508 bp 3' UTR. The open reading frame translates into 421 amino acids in which a DNA-binding domain (DBD) containing the repeated tryptophan motif and IRFs association domain have been identified. Like chicken GgIRF3, CaIRF7 was most similar to mammalian IRF7 with 27 to 30% identity overall and some 37% identity in their DBDs. A single transcript of 1.9 kb was detected in virally induced CAB cells by virtual Northern blotting. RT-PCR analysis revealed a wide tissue distribution of CaIRF7 constitutive expression, with detectable transcript in non-infected CAB cells and various tissues of healthy crucian carp. In addition, CaIRF7 expression was differentially increased by stimulation of the CAB cells with active GCHV, UV-inactivated GCHV or CAB IFN, indicating that the activation of CaIRF7 was directly regulated by IFN. (C) 2003 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although reovirus infection is one of the major virus diseases of grass carp in China, the available knowledge on the structure and function of genes and proteins of the virus is limited. The complete sequence of the S9 genome segment of grass carp hemorrhage virus (GCHV) was determined. The segment consists of 1130 nucleotides and has a large open reading frame (ORF) encoding a protein of 352 amino acids with predicted molecular mass of 37.7 kDa. Amino acid sequence comparison revealed that the deduced protein encoded by GCHV S9 is closely related to the sigma NS proteins of mammalian reovirus (MRV) and avian reovirus (ARV). Secondary structure analysis displayed that the form of alpha -helices (40.1%) and beta -sheets (49.4%) are the richest two contents in the protein encoded by S9, and this protein is predicted to be a nonstructural protein. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new gene with WD domains is cloned and characterized according to its differential transcription and expression between previtellogenic oocytes (phase I oocytes) and fully-grown oocytes (phase V oocytes) from natural gynogenetic silver crucian carp (Carassius auratus gibelio) by using the combinative methods of suppressive subtraction hybridization, SMART cDNA synthesis and RACE-PCR. The full-length cDNA is 1870 bp. Its 5 ' untranslated region is 210 bp, followed by an open reading frame of 990 bp, which has the typical vertebrate initiator codon of ANNATG. The open reading frame encodes a protein with 329 amino acids. It has 670 bp of 3 ' untranslated region and an AATAAA polyadenylation signal. Because it has 92% homology to STRAP (serine-threonine kinase receptor-associated protein), a recently reported gene, we named it FSTRAP (fish STRAP). Virtual Northern blotting indicated that the FSTRAP was transcribed in fully-grown oocytes (phase V oocytes), but not in previtellogenic oocytes (phase I oocytes). RT-PCR analysis showed that FSTRAP was transcribed in brain, heart, kidney, muscle, ovary, spleen and testis, but not in liver. And its mRNA could be detected in the oocytes from phase II to phase V. Western blotting also showed that FSTRAP protein could be detected in brain, heart, kidney, muscle, ovary, spleen and testis except liver. Results of Western blotting on various oocytes were also similar to the RT-PCR data. FSTRAP protein was not expressed in the previtellogenic oocytes. Its expression initiated from phase II oocytes after vitellogenesis, and was consistent with the mRNA transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete nucleotide sequence of the genome segment S8 of grass carp hemorrhage virus (GCHV) was determined from cDNA corresponding to the viral genomic RNA. It is 1,287 nucleotides in length and contains a large open reading frame that could encode a protein of 409 amino acids with a predicted molecular mass of 44 kD. The S8 was expressed using the pET fusion protein vector and detected by Western blotting analysis using the chicken egg IgY against intact GCHV particles, indicating that S8 encodes a virion protein. Amino acid sequence comparisons revealed that the protein encoded by S8 is closely related to protein alpha2 of mammalian reovirus, suggesting that the deduced protein of S8 is an inner capsid protein. Copyright (C) 2001 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

7The complete nucleotide sequence of M6 gene of grass carp hemorrhage virus (GCHV) was determined. It is 2039 nucleotides in length and contains a single large open reading frame that could encode a protein of 648 amino acids with predicted molecular mass of 68.7 kDa. Amino acid sequence comparison revealed that the protein encoded by GCHV M6 is closely related to the protein mul of mammalian reovirus. The M6 gene, encoding the major outer-capsid protein, was expressed using the pET fusion protein vector in Escherichia coli and detected by Western blotting using chicken anti-GCHV immunoglobulin (IgY). The result indicates that the protein encoded by M6 may share a putative Asn-42-Pro-43 proteolytic cleavage site with mul.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemorrhagic disease, caused by the grass carp reovirus (GCRV), is one of the major diseases of grass carp in China. Little is known about the structure and function of the gene segments of this reovirus. The S10 genome segment of GCRV was cloned and the complete nucleotide sequence is reported here. The S10 is 909 nucleotides long and contains a large open reading frame (ORF) encoding a protein of 276 amino acids with a deduced molecular weight of approximately 29.7 kDa. Comparisons of the deduced amino acid sequence of GCRV S10 with those of other reoviruses revealed no significant homologies. However, GCRV S10 shared a putative zinc-finger sequence and a similar distribution of hydrophilic motifs with the outer capsid proteins encoded by Coho salmon aquareovirus (SCSV) S10, striped bass reovirus (SBRV) S10, and mammalian reovirus (MRV) S4. It was predicted that this segment gene encodes an outer capsid protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

作物的抗旱性是一个多基因控制的、极为复杂的数量性状,植物对干旱在分子水平上的差异反应通过植物组织生理和细胞生物学水平,最终表现为植物抗旱性的不同。在我国,旱地农业超过耕地面积的50%,但水资源短缺,因此培育和选育抗旱高产作物是发展节水型农业最有效的途径。 青藏高原气候恶劣、年均降雨量少,也是世界大麦初生起源中心,因而蕴藏了十分丰富的与抗逆相关的种质资源材料,从这些特殊的资源材料克隆抗旱基因,不仅对培育抗旱、优质、高产大麦新品种具有重要理论意义和经济价值,而且对整个作物抗旱基础和育种应用研究都具重大促进作用。 为了筛选青稞(裸大麦,Hordeum vulgare ssp. vulgare)抗旱性材料,本研究选用来自青藏高原不同地区的84份青稞为材料,在叶片失水率(water loss rate, WLR)检测分析的基础上,选择失水率值差异显著的12个品种,通过相对含水量(relative water content, RWC)和反复干旱法评价其抗旱性,并通过植株对干旱胁迫下的丙二醛(MDA)含量和游离脯氨酸(free-proline)含量变化,了解不同抗旱性材料的生理反应特性。选择抗旱性强弱不同的品种各两份进行LEA2蛋白基因(Dhn6基因)、LEA3蛋白基因(HVA1基因)的克隆,比较LEA蛋白结构差异与作物抗旱性之间的关系。同时,对抗旱性不同的青稞品种受到干旱时间不同的失水变化率(dynamics water loss rate, DWLR)进行了检测;对抗旱性不同的青稞对照材料进行2 h、4 h、8 h和12 h的快速干旱处理,通过SYBR Green实时荧光定量RT-PCR技术对Dhn6基因、Dhn11基因、Dhn13基因和HVA1基因在不同抗旱性材料受到不同干旱时间处理后的相对表达水平进行了检测。本研究对LEA蛋白基因在抗旱性不同的青稞材料中的干旱胁迫分子水平上的差异反应进行了研究,也对植物的抗旱机理进行了初步探讨。主要研究结果如下: 1. 青稞苗期进行离体叶片失水率测定结果表明,来自青藏高原的84份青稞材料的WLR在0.086~0.205gh-1g-1DW之间。选择WLR低于0.1gh-1g-1DW和WLR高于0.18gh-1g-1DW的品种各6份,并对苗期分别进行未干旱及干旱12小时的处理。相对含水量检测结果表明,低失水率青稞材料干旱后的具有更高的相对含水量,盆栽缺水试验也显示叶片失水率低的材料耐旱能力强于失水率高的材料。通过水合茚三酮法测定离体叶片游离脯氨酸的含量,结果表明,所有品种未干旱处理时,游离脯氨酸含量差异不大(17.10~25.74 µgg-1FW);干旱12小时后,低失水率的品种游离脯氨酸含量明显增高(32.99~53.45µgg-1FW),高失水率品种的游离脯氨酸含量与干旱前变化不明显(P<0.05)。硫代巴比妥酸法测定离体叶片丙二醛(MDA)含量,结果显示,12份所选对照品种中,丙二醛的含量在0.97~2.74nmolg-1FW,干旱12小时后丙二醛的含量显著上升(1.46~4.74nmolg-1FW),高失水率的6个品种的丙二醛含量在未干旱和干旱处理时都明显高于低WLR品种。本研究结果表明青稞的低失水率、低丙二醛含量、高相对含水量和高脯氨酸含量具相关性(P<0.05)。综上研究,我们认为作物失水率的测定可以作为快速检测作物抗旱性的指标之一,因此,强抗旱品种喜玛拉10号(TR1)、品比14号(TR2)和弱抗旱品种冬青8号(TS1)、QB24 (TS2)被选作抗旱基因克隆和表达分析的研究材料。 2. 高等植物胚胎发育晚期丰富蛋白(late embryogenesis abundant proteins, LEA proteins)与植物耐脱水性密切相关,为了探讨青稞LEA蛋白结构差异性与植物抗旱性的关系,本研究以强抗旱品种(喜玛拉10号、品比14号)和弱抗旱品种(冬青8号、QB24)为材料,利用同源克隆法,通过RT-PCR,分别克隆了与抗旱性密切相关的Dhn6基因和HVA1基因。Dhn6基因序列分析结果表明,强抗旱品种品比14号和弱抗旱品种冬青8号Dhn6基因所克隆到的序列为1026bp,它们之间只有5个碱基的差异;喜玛拉10号和QB24克隆到的序列长963bp。在强弱不同的抗旱品种中有22个核苷酸易突变位点,相应的脱水素氨基酸序列推导结果表明,22个核苷酸突变位点中,仅有8个位点导致相应的氨基酸残基的改变,其余的位点系同义突变,另外,21个富含甘氨酸序列的缺失并没有联系作物抗旱性特征。推测这些同义突变位点的氨基酸残基对维持青稞DHN6蛋白的正常结构和功能起着非常重要的作用,也可能DHN6蛋白对青稞长期适应逆境胁迫和遗传进化的结果。对HVA1基因的序列分析结果表明,冬青8号、QB24、品比14号和喜玛拉10号的目的基因核苷酸序列全长分别为661bp、697bp、694bp和691bp,它们都包含1个完整的开放阅读框。相应的LEA3蛋白氨基酸序列结果表明,11个高度保守的氨基酸残基组成基元重复序列的拷贝数与青稞抗旱性之间没有必然关系,在强抗旱品种(喜玛拉10号、品比14号)中三个共同的氨基酸突变位点Gln32、Arg33和Ala195可能对抗旱蛋白的结构和功能有影响;另外,强抗旱青稞品种LEA3蛋白质中11-氨基酸保守基元序列拷贝数和极性氨基酸占蛋白的比例更高,推测LEA3蛋白中基元序列拷贝数和极性氨基酸占蛋白的比例对该蛋白的结构和功能影响更大。 3. LEA蛋白基因的表达水平的上调与植物的耐脱水性密切相关,我们对强抗旱性材料(喜玛拉10号、品比14号)和弱抗旱材料(冬青8号、QB24)进行干旱处理2 h、4 h、6 h、8 h和10 h的失水变化率进行测定,结果表明弱抗旱品种在2~4小时之间失水率变化最明显,而四个对照品种的失水率在8小时后和24小时的失水率值变化不大。进一步提取青稞苗期进行2 h、4 h、8 h和12 h的干旱处理后的总RNA,通过SYBR Green实时荧光定量RT-PCR技术对青稞脱水素基因(Dhn6、Dhn11和Dhn13)和LEA3蛋白基因(HVA1)的相对表达水平受干旱时间和作物抗旱性的影响进行了检测。研究发现,抗旱性不同的青稞品种随干旱处理的时间延长,Dhn6、Dhn11、Dhn13和HVA1基因的相对表达水平不同。 Dhn6基因的相对表达水平在强抗旱青稞品种干旱8小时后快速上升,但在弱抗旱青稞品种干旱处理12小时后检测到更高表达量;Dhn11基因在对照青稞抗旱品种的表达累积水平随干旱时间的延长持续下降;整个干旱过程中,Dhn13基因的相对表达水平在弱抗旱品种持续上升,在强抗旱品种中干旱处理8小时快速上升并达到最高,干旱12小时后降低。与脱水素基因相比较,强抗旱青稞品种在干旱2小时后HVA1基因的相对表达水平显著升高,相对表达量随干旱处理的时间持续上升,在干旱12小时后达到最高;与之相比较,在整个干旱过程中,弱抗旱品种的相对表达水平显著低于强抗旱品种,在干旱8小时之前弱抗旱品种的相对表达水平变化不明显;在干旱8~12小时后却显著上升。上述结果表明,不同的LEA蛋白在植物耐脱水过程中的干旱表达累积水平不同;干旱不是诱导高等植物Dhn11基因表达的主要因素;植物的抗旱性不同,不同LEA蛋白基因对干旱的反应有差异。推测某些LEA蛋白基因的干旱胁迫早期表达累积程度与植物的抗旱性直接相关;其中,Dhn11基因和Dhn12基因不同的表达模式可能与干旱调控表达顺式作用成分(dehydration responsive element, DRE)的有无或结构上的差异有关。 本研究结果认为,(1)失水率和相对含水量可作为植物抗旱性检测的指标之一;(2) DHN6同义突变位点的氨基酸残基对维持该蛋白的正常结构和功能起着重要作用;(3) 11-氨基酸保守基元序列拷贝数和极性氨基酸的比例对LEA3蛋白结构和功能有重要影响;(4)LEA蛋白表达随着干旱胁迫程度而增加,但Dhn11基因并不受干旱诱导表达;(5)作物的抗旱性不同,LEA蛋白对干旱的累积反应并不相同,干旱早期LEA蛋白的累积程度可能会影响植物的抗旱性。 Drought resistance was a complex trait which involved multiple physiological and biochemical mechanisms and regulation of numerous genes. Because its complex traits, it is difficult to understand the mechanisms of drought resistance in plants. Plants respond to water stress through multiple physiological mechanisms at the cellular, tissue, and whole-plant levels. Tibetan hulless barley, a pure line, is a selfing annual plant that has predominantly penetrated into the Qinghai-Tibetan Plateau and remains stable populations there. The wide ecological range of Tibetan hulless barley differs in water availability, temperature, soil type and vegetation, which makes it possess a high potential of adaptive diversity to abiotic stresses. This adaptive genetic diversity indicates that the potential of Tibetan hulless barley serves as a good source for drought resistance alleles for breeding purposes. 12 contrasting drought-tolerant genotypes were selected to measure relative water content (RWC), maldondialdehyde (MDA) and proline content, based on values of water loss rate (WLR) and repeated drought methods from Tibetan populations of cultivated hulless barley. As a result of the screening, sensitive and tolerant genotypes were identified to clarify relationships between characteristics of LEA2/LEA3 genes sequences and expression and drought-tolerant genotypes, associated with resistance to water deficit. In addition, dynamics water loss rate (DWLR) was measured to observe the changes on diffrential drought-tolerant genotypes. Real-time quantitative RT-PCR was applied to detect relative expression levels of Dhn6, Dhn11, Dhn13 and HVA1 genes in sensitive and tolerant genotypes with 2 h, 4 h, 8h and 12 h of dehydration. In the present study, differential sequences and expression of LEA2/LEA3 genes were explored in Tibetan hulless barley, associated with phenotypically diverse drought-tolerant genotypes. 1. The assessments of WLR and RWC were considered as an alternative measure of plant water statues reflecting the metabolic activity in plants, and the parameters of MDA and proline contents were usually consistent with the resistance to water stress. The values of detached leaf WLR of the tested genotypes were highly variable among 84 genotypes, ranging from 0.086 to 0.205 g/h.g DW. The 12 most contrasting genotypes (6 genotypes with the lowest values of WLR and 6 genotypes with the highest values of WLR) were further validated by measuring RWC, MDA and free-proline contents, which were well watered and dehydrated for 12 h. Results of RWC indicated that the values of 12 contrasting genotypes RWC ranged from 89.94% to 93.38% under condition of well water, without significant differences, but 6 genotypes with lower WLR had higher RWC suffered from 12 h dehydration. The results indicated that lower MDA contents, lower scores of WLR and higher proline contents were associated with drought-tolerant genotypes in hulless barley. Remarkably, proline amounts were increased more notable in 6 tolerant genotypes than 6 sensitive genotypes after excised leaves were dehydrated for 12 h, with control to slight changes under condition of well water. Results of MDA contents showed that six 6 tolerant genotypes had lower MDA contents than the 6 sensitive genotypes under both stressed and non-stressed conditions. As a result of that screening, drought- resistant genotypes (Ximala 10 and Pinbi 14) and drought-sensitive genotypes (Dongqing 8 and QB 24) were chosen for comparing the differential characteristics of LEA2/LEA3 genes and their expression analysis. It was conclusion that measurements of WLR could be considered an alternative index as screening of drought-tolerant genotypes in crops. 2. Late embryogenesis abundant (LEA) proteins were thought to protect against water stress in plants. To explore the relationships between configuration of LEA proteins and phenotypically diverse drought-tolerant genotypes, sequences of LEA genes and their deduced proteins were compared in Tibetan hulless barley. Results of comparing Dhn6 gene in Ximala 10 and QB24 indicated that absence of 63bp was found, except that only 5 mutant nucleotides were found. While 22 mutant sites were taken place in Dhn6 gene between sensitive and tolerant lines, 14 synonymous mutation sites appeared in the contrasting genotypes. The additional/absent polypeptide of 21 polar amino acid residues was not consistent with phenotypically drought-tolerant genotypes in hulless barley. It was deduced that synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein. The sequencing analysis results indicated that each cloned HVA1 gene from four selected genotypes contained an entire open reading frame. The whole sequence of HVA1 gene from Dongqing 8, QB24, Pinbi 14 and Ximala 10 was respectively 661bp, 697bp, 694bp and 691bp. Results of DNA sequence analyses showed that the differences in nucleotides of HVA1 gene in sensitive genotypes were not consistent with that of tolerant genotypes, except for absence of 33 nucleotides from +154 to +186 (numbering from ATG) in QB24. Database searches using deduced amino acid sequences showed a high homology in LEA3 proteins in the selected genotypes. Multiple sequence alignments revealed that LEA3 protein from Dongqing 8 was composed of 8 repeats of an 11 amino acid motif, less the fourth motif than Pinbi 14, Ximala 10 and QB24. Consistent mutant amino acid residues appeared in contrasting genotypes by aligning and comparing the coding sequence region, including Gln32, Arg33 and Ala195 in tolerant genotypes as compared to Asp32, Glu33 and Thr195 (Thr184 in Dongqing 8) in sensitive lines. It was concluded that consistent appearance of Gln32, Arg33 and Ala195 would contributed to functions of LEA3 protein in crops, as well as higher proportion of 11-amino-repeating motifs and polar amino acid residues. 3. Most of the LEA genes are up-regulated by dehydration, salinity, or low temperature, are also induced by application of exogenous ABA, which increases in concentration in plants under various stress conditions and acts as a mobile stress signal. Higher levels of proteins of LEA group 3 accumulated was correlated well with high level of desiccation tolerance in severely dehydrated plant seedlings. Dehydrins (DHNs), members of LEA2 protein, are an immunologically distinct protein family, and Dhn genes expression is associated with plant response to dehydration. Dynamic water loss rate was measured between sensitive genotypes and tolerant genotypes after they were dehydrated for 2 h, 4 h, 6h and 8 h. Detailed measurements of WLR at the early stage of dehydration (2, 4, 6, and 8 h) showed that WLR was stabilizing after 8 h, and there were no significant changes between these values and WLR after 24 h. Drought stress was applied to 10-day-old seedlings by draining the solution from the container for defined dehydration periods. Leaf tissues of the selected genotypes were harvested from control plants (time 0); and after 2, 4, 8, and 12 h of dehydration. Differential expression trends of Dhn6, Dhn11, Dhn13 and HVA1 genes were detected in phenotypically diverse drought-tolerant hulless barleys, related to different time of dehydration. Results of quantitative real-time PCR indicated that relative level of HVA1 expression was always higher in tolerant genotypes, rapidly increasing at the earlier stages (after 2-4 h of dehydration). However, HVA1 expressions of sensitive genotypes had a fast increase from 8 h to 12 h of stress. Significant differences in expression trends of dehydrin genes between tolerant genotypes and sensitive lines were detected, mainly in Dhn6 and Dhn13 gene, depending on the duration of the dehydration stress. The relative expression levels of Dhn6 gene were significantly higher in tolerant genotypes after 8 h dehydration, by control with notable higher expression levels after 12 h water stress in sensitive ones. The relative expression levels of Dhn13 gene tended to ascend during exposure to dehydration in drought-sensitive genotypes. However, fluctuate trends of Dhn13 expression level were detected in drought-resistant lines, including in lower expression levels of 12 h dehydration as compared to 8 h water stress. It was conclusion that (1) diverse LEA proteins would play variable roles in resisting water stress in plants; (2) expression of Dhn11 gene was not induced by dehydrated signals because of the trends of expression descended in contrasting genotypes suffered from water deficit and (3) variable accumulations on LEA proteins would be appear in diverse drought-tolerant genotypes during dehydrations. It is deduced that higher accumulations of Dhn6 and Dhn13 expression in 8 h dehydration are related to diverse drought-tolerant lines in crops. The present results indicated that different dehydrin genes would play variable functional roles in resisting water stress when plants were suffered from water deficit. The authors suggest physiologically different reactions between resistant and sensitive genotypes may be the results of differential expression of drought-resistant genes and related signal genes in plants. In addition, contrarily induced expression of Dhn11 and Dhn12 was related to dehydration responsive element (DRE) in barleys. The present study indicated that (1) measurements of WLR and RWC could be considered as one index of drought-tolerant screenings; (2) synonymous mutation sites would play important roles in holding out right configurations and functions on DHN6 protein, (3) higher proportion of 11-amino-repeating motifs and polar amino acid residues would contribute to functions on LEA3 protein, (4) the longer drought, the more accumulation on LEA proteins, except for Dhn11 gene in crops and (5) differential responses on expression of LEA protein genes would result in physiological traits of drought tolerance in plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

禾谷孢囊线虫(Heterodera avenae)是严重危害禾谷类作物的病原线虫之一,它广泛分布于澳大利亚、欧洲、北美、印度和中国等世界主要小麦产区,使作物严重减产,造成巨大的经济损失。目前最有效的防治措施之一是将外源抗性基因导入栽培小麦(Triticum aestivum L.),培育抗禾谷孢囊线虫的新品种。但迄今为止抗禾谷孢囊线虫基因克隆研究的相关报道却很少。 本实验根据此前从抗禾谷孢囊线虫材料E-10扩增得到的与来自节节麦(Aegilops tauschii)的抗禾谷孢囊线虫基因Cre3高度同源的序列Rccn4,设计出三条嵌套引物,采用SON-PCR(single oligonucleotide nested PCR)方法,从E-10基因组DNA中得到一个长为1264 bp的扩增产物(命名为Rccn-L),测序比对结果显示,这一序列将Rccn4的3’端延伸了1209 bp,与抗禾谷孢囊线虫Cre3基因核苷酸同源性为86﹪,核苷酸编码区长1026 bp,含一个不完整的开放阅读框,一个终止密码子,没有起始密码子和内含子结构,编码一个342个氨基酸残基的蛋白质。该蛋白质等电点为5.19,分子量为38112.6Da。从序列的第113位开始到第332位是NBS-LRR类抗病性基因LRR区,呈现XXLXXLXXL重复。LRR编码区内亮氨酸残基的含量达17﹪,与抗禾谷孢囊线虫Cre3基因LRR编码区的核苷酸和氨基酸同源性分别为89﹪和78﹪。本实验首次将SON-PCR成功地运用于植物基因克隆,为植物基因克隆提供了又一有效方法。 此外,还根据Cre3基因及其他的NBS-LRR类植物抗性基因的NBS和LRR区保守序列设计了两对特异性引物,从禾谷孢囊线虫抗性材料易变山羊草基因组DNA中扩增到两个相应的目标条带。测序分析结果表明,它们的长度分别为532bp和1175bp,构成了一个有32bp的共同序列的NBS-LRR编码区。其序列总长为1675bp(命名为RCCN),含有一个不完整的开放阅读框,没有起始密码子、终止密码子和内含子结构。其中编码序列为1673bp,可编码一个557个氨基酸的蛋白质,等电点(pI)为5.39,分子量为63537.5Da。与Cre3的核苷酸和氨基酸同源性分别为87.8﹪和77﹪。RCCN氨基酸序列中含有已知抗病基因NBS区域的几个保守模体:kinase2区的ILDD、kinase3的(ⅰ)ESKILVTTRSK,(ⅱ)KGSPLAARTVGG,(ⅲ)RRCFAYCS及EGF。RCCN NBS区与Cre3 NBS区的核苷酸和氨基酸的同源性分别为96.4﹪和94﹪。从氨基酸序列的274位到548位为LRR保守区,呈现不规则的aXXLXXLXXL(其中a代表I,V,L,F或M)重复,其中亮氨酸的含量为15.6﹪。该区域与Cre3的LRR区的核苷酸和氨基酸同源性分别为80.8﹪和74﹪。推测该序列可能为一个抗禾谷孢囊线虫的新基因。 本文对抗禾谷孢囊线虫基因的克隆研究,为进一步克隆基因全序列,探索其结构与功能,和研究该基因表达与调控提供了关键信息。同时也为通过基因工程途径将抗性基因向优良小麦品种高效、定向转移,最终培育出小麦抗禾谷孢囊线虫新品种奠定了基础。 Cereal cyst nematode (CCN) is a damaging pathogen of broad acre cereal crops in Australia, Europe, North America, India and China. It affects wheat, barley, oat and triticale and causes yield loss of up to 80%. At present, Transferring resistance genes against CCN into wheat cultivars and breeding varieties are considered one of the most effective methods for controlling the CCN. However, there are very limited reports concerning the cloning studies of resistance genes against the cereal cyst nematode. According to the sequence of Rccn4 which had high similarity to the nucleotide binding site (NBS) coding region of cereal cyst nematode resistance gene, Cre3, We designed three 3’ nested primers. Using single oligonucleotide nested PCR (SON-PCR) we successfully amplified one band, Rccn-L, of 1264bp from E-10 which is the wheat-Ae.variabilis translocation line containing the cereal cyst nematode resistance gene of Ae.variabilis. We found that this band of interesting is the 3’ flanking sequence of 1209bp in size of Rccn4. The coding region was 1026bp, which contained an incomplete open reading frame and a terminator codon, without initiation codon and intron, encoding a peptide of 342 amino acid residues, and shared 86﹪nucleotide sequence identity with Cre3. This peptide had a conserved LRR domain, containing the imperfect repeats,XXLXXLXXL, which contains 17﹪ leucine residues and shares, respectively, 89﹪ nucleotide sequence and 78﹪ amino acid sequence identity with the LRR sequence of Cre3 locus. This research firstly used SON-PCR in the research of plant genome successfully, which indicated that SON-PCR is another method of cloning plant gene. At the same time, According to the conversed motif of NBS and LRR region of cereal cyst nematode resistance gene Cre3 from wild wheat (Triticum tauschlii L.) and the known NBS-LRR group resistance genes, we designed two pairs of specific primers for NBS and LRR region respectively. One band of approximately 530bp was amplified using the specific primers for conversed NBS region and one band of approximately 1200bp was amplified with the specific primers for conversed LRR region. After sequencing, we found that these two sequences included 32bp common nucleotide sequence and have 1675 bp in total, which was registered as RCCN in the Genbank. RCCN contained a NBS-LRR domain and an incomplete open reading frame without initiation codon, terminator codon and inxon. Its exon encodes a peptide of 557 amino acid residues. The molecular weight of the protein from the amino acid was 63.537 KDa. The amino acid sequence of RCCN contained conserved motif: ILDD, ESKILVTTRSK, KGSPLAARTVGG, RRCFAYCS, EGF,LRR. RCCN shares 87.8﹪ nucleotide sequence and 77﹪ amino acid sequence identity with cereal cyst nematode gene Cre3. It might be a novel cereal cyst nematode resistance gene. These research results of cloning the resistance genes against cereal cyst nematode bring a great promise for transferring resistance genes into wheat cultivars and breeding new wheat varieties against cereal cyst nematode by gene engineering. And these results also lay the hard foundation for the expressing researches of these genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

禾谷孢囊线虫严重影响禾谷类作物的产量,在小麦中由禾谷孢囊线虫引起的产量损失可达30-100%。尤其在澳大利亚、欧洲、印度和中东危害严重,目前禾谷孢囊线虫已成为危害我国作物的主要病源。控制禾谷孢囊线虫的方法主要有:作物轮作、杀线虫剂、寄主抗性等等,其中基因工程方法培育抗线虫小麦品种被认为是最经济有效的方法。分离抗禾谷类孢囊线虫基因对揭示抗性基因结构与功能及其表达调控具有重要意义。 尽管小麦是重要的粮食作物,在小麦中已发现的抗禾谷孢囊线虫的基因很少,而比其近缘属如节节麦、易变山羊草、偏凸山羊草中含有丰富的抗源。目前已鉴定出禾谷孢囊线虫抗性位点Cre,并发现了9个禾谷孢囊线虫抗性基因(Cre1,2, 3, 4, 5, 6, 7, 8, and R) ,其中只有Cre1和Cre8直接从普通小麦中获得。从节节麦中获得的Cre3基因能最有效的控制线虫数量,其次是Cre1和Cre8。这些基因的克隆对于了解禾谷孢囊线虫抗性机制及进一步的育种应用都是非常关键的。然而,目前为止仅有Cre3基因通过图位克隆的方法从节节麦中被分离得到。该基因已被克隆得到的多数线虫抗性基因一样均属于核苷酸结合位点区(NBS)-亮氨酸重复序列区(LRR)基因家族。目前,已有很多抗性基因被分离,这些已知的NBS-LRR类抗性基因的保守序列为应用PCR的方法克隆新的抗性基因提供了可能。 因此本课题的目的是采用保守区同源克隆、3′RACE 和5′RACE 等方法从抗禾谷孢囊线虫小麦-易变山羊草小片段易位系E10 中克隆小麦抗禾谷孢囊线虫基因全序列,进而通过半定量PCR 和荧光定量PCR 研究该基因的表达模式。同时通过mRNA 差别显示技术和任意引物PCR(RAP-PCR)技术分离克隆植物禾谷孢囊线虫抗性基因及其相关基因,为阐明植物抗病性分子机制以及改良作物抗病性和作物育种提供基础,为通过分子标记辅助育种和基因工程方法实现高效、定向转移抗病基因到优良小麦品种奠定了重要的理论和物质基础。主要研究结果: 1. 本实验根据此前从抗禾谷孢囊线虫材料E-10 扩增得到的与来自节节麦的抗禾谷孢囊线虫Cre3 基因及其他的NBS-LRR 类抗性基因的NBS 和LRR 保守区序列设计了两对特异性引物,从E10 中扩增到532bp 和1175bp 的两个目标条带,它们有一个32bp 的共同序列,连接构成总长为1675bp 的NBS-LRR 编码区(命名为RCCN)。根据RCCN设计引物,利用NBS-LRR区序列设计引物,通过5′RACE 和3′RACE 技术采用3′-Full RACE Core Set(TaKaRa)和5'-Full RACE Kit (TaKaRa)试剂盒,反转录后通过嵌套引物GSP1 和GSP2 分别进行两轮基因特异性扩增,分别将NBS_LRR 区向5′端和3′端延伸了1173bp 和449bp,并包含了起始密码子和终止密码子。根据拼接的得到的序列重新设计引物扩增进行全基因扩增的结果与上面获得的一致。拼接后得到全长2775 bp 的基因序列(记作CreZ, GenBank 号:EU327996)。CreZ 基因包括完整的开放阅读框,全长2775 bp,编码924个氨基酸。序列分析表明它与已知的禾谷孢囊线虫抗性基因Cre3的一致性很高,并且它与已经报到的NBS-LRR 类疾病抗性基因有着相同的保守结构域。推测CreZ基因可能是一个新的NBS-LRR 类禾谷孢囊线虫抗性基因,该基因的获得为通过基因工程途径培育抗禾谷孢囊线虫小麦新品种奠定了基础,并为抗禾谷孢囊线虫基因的调控表达研究提供了参考。 2. 通过半定量PCR和SYBR Green荧光定量PCR技术对CreZ基因的相对表达模式进行了研究。以α-tubulin 2作为参照,采用半定量PCR 分析CreZ 基因在不同接种时期1d, 5d, 10, 15d 的E-10的根和叶的的表达情况。在内参扩增一致的条件下,CreZ 在E-10的根部随着侵染时间的增加表达量有明显的增加,在没有侵染的E-10的根部其表达量没有明显变化,而在叶中没有检测表达,说明该基因只在抗性材料的根部表达。SYBR Green定量PCR分析接种前后E10根部基因CreZ基因的表达水平为检测CreZ基因的表达建立了一套灵敏、可靠的SYBRGreen I 荧光定量PCR 检测方法。接种禾谷孢囊线虫后E10根内CreZ基因的相对表达水平显著高于接种前。随接种时间的延长持续增加,最终CreZ基因的相对表达量达到未接种的对照植株的10.95倍。小麦禾谷孢囊线虫抗性基因CreZ的表达量与胁迫呈正相关,表明其与小麦的的禾谷孢囊线虫抗性密切相关,推测CreZ基因可能是一个新的禾谷孢囊线虫候选抗性基因。 3. 针对小麦基因组庞大、重复序列较多,禾谷孢囊线虫抗性基因及其相关基因的片断难以有效克隆的问题,通过mRNA 差别显示技术及RAP-PCR 技术分离克隆植物禾谷孢囊线虫抗性及其相关基因。试验最终得到154 条差异表达条带,将回收得到的差异条带的二次PCR 扩增产物经纯化后点到带正电的尼龙膜上,进行反向Northern 杂交筛选,最终筛选得到102 个阳性差异点。将其中81 个进行测序,并将序列提交到Genbank 中的dbEST 数据库,分别获得登录号(FE192210 -FE192265,FE193048- FE193074 )。序列比对分析发现,其中26 个序列与已知功能的基因序列同源;有28 条EST 序列在已有核酸数据库中未找到同源已知基因和EST,属新的ESTs 序列;另外27 个EST 序列与已知核酸数据库中的ESTs 具有一定相似性,但功能未知。其所得ESTs 序列补充了Genbank ESTs 数据库,为今后进一步开展抗禾谷类孢囊线虫基因研究工作打下了基础。结合本试验功能基因的相关信息,对小麦接种禾谷孢囊线虫后产生的抗性机制进行了探讨。接种禾谷孢囊线虫后植物在mRNA 水平上的应答是相当复杂的,同时植物的抗病机制是一个复杂的过程,涉及到多个代谢途径的相互作用。 The cereal cyst nematode (CCN), Heterodera avenae Woll, causes severe yieldreductions in cereal crops. The losses caused by CCN can be up to 30-100% in somewheat fields. At present, cereal cyst nematode has become the major disease sourcein China and it also damaged heavily in Australia, Europe, India and Middle East.The damage caused by CCN can be mitigated through several methods, includingcrop rotation, nematicide application, cultural practice, host resistance, and others.Of these methods, incorporating resistance genes into wheat cultivars and breedingresistant lines is considered to be the most cost-effective control measure forreducing nematode populations. Although wheat is an economically important crop around the world, far fewergenes resistant to CCN were found in wheat than were detected in its relatives, suchas Aegilops taucchi, Aegilops variabilis and Aegilops ventricosa. Cloning these genesis essential for understanding the mechanism of this resistance and for furtherapplication in breeding. Because of the huge genome and high repeat sequencescontent, the efficient methods to clone genes from cereal crops, are still lacking. A resistance locus, Cre, has been identified and 9 genes resistant to CCN (designatedCre1, 2, 3, 4, 5, 6, 7, 8, and R) have been described, in which Cre1 and Cre8 werederived directly from common wheat. The Cre3 locus, which was derived from Ae.tauschii, has the greatest impact on reducing the number of female cysts, followed byCre1 and Cre8. Cloning these genes is essential for understanding the mechanism ofthis resistance and for further application in breeding. However, to this point, only Cre3, a NBS-LRR disease resistance gene, has been obtained through mappingcloning in Ae. tauschii. The majority of nematode resistance genes cloned so far belong to a super familywhich contains highly conserved nucleotide-binding sites (NBS) and leucine-richrepeat (LRR) domains. To date, many NBS-LRR resistance genes have been isolated.The conserved sequences of these recognized NBS-LRR resistance genes provide thepossibility to isolate novel resistance genes using a PCR-based strategy. The aim of the present study was to clone the resistance gene of CCN fromWheat/Aegilops variabilis small fragment chromosome translocation line E10 whichis resistant to CCN and investigate the espression profiles of this gene withsemi-quantitative PCR and real-time PCR. Another purpose of this study is cloningthe relational resistance gene for CCN by mRNA differential display PCR andRAP-PCR. These works will offer a foundation for disease defence of crop andbreeding and directional transferring resistance gene into wheat with geneengineering. Primary results as following: 1.According to the conversed motif of NBS and LRR region of cereal cystnematode resistance gene Cre3 from wild wheat (Triticum tauschlii) and the knownNBS-LRR group resistance genes, we designed two pairs of specific primers for NBSand LRR region respectively. One band of approximately 530bp was amplified usingthe specific primers for conversed NBS region and one band of approximately 1175bpwas amplified with the specific primers for conversed LRR region. After sequencing,we found that these two sequences included 32bp common nucleotide having 1675bpin total, which was registered as RCCN in the Genbank. Based on the conservedregions of known resistance genes, a NBS-LRR type CCN resistance gene analog wasisolated from the CCN resistant line E-10 of the wheat near isogenic lines (NILs), by5′RACE and 3′ RACE.designated as CreZ (GenBank accession number: EU327996) .It contained a comlete ORF of 2775 bp and encoded 924 amino acids. Sequencecomparison indicated that it shared 92% nucleotide and 87% amino acid identitieswith those of the known CCN-resistance gene Cre3 and it had the same characteristic of the conserved motifs as other established NBS-LRR disease resistance genes. 2. Usingα-tubulin 2 as exoteric reference, semi-quantitative PCR and real-timePCR analysis were conducted. The expression profiling of CreZ indicated that it wasspecifically expressed in the roots of resistant plants and its relative expression levelincreased sharply when the plants were inoculated with cereal cyst nematodes. therelative expression level of the 15days-infected E10 is the 10.95 times as that ofuninfected E10,ultimately. It was inferred that the CreZ gene be a novel potentialresistance gene to CCN. 3.We cloned the relational resistance gene for CCN by mRNA differentialdisplay PCR and arbitrarily primed PCR fingerprinting of RNA from wheat whichpossess huge and high repeat sequence content genomes. Total 154 differentialexpression bands were separated and second amplified by PCR. The products werenylon membrane. The 102 positive clones were filtrated by reverse northern dot blotand 81 of those were sent to sequence. The EST sequences were submitted toGenbank (Genbank accession: FE192210 - FE192265, FE193048 - FE193074). Thesequences alignment analysis indicated 26 of them were identical with known genes;28 were not found identical sequence in nucleic acid database; another 27 ests wereidentical with some known ests, but their functions were not clear. These ESTsenriched Genbank ESTs database and offered foundation for further research ofresistance gene of CCN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

亚克隆测序分析发现 ,在 Bradyrhizobium japonicum的 GX2 0 1菌株染色体的 1 6kb Eco R DNA区段上含有一个与 put A基因同源的基因的 ORF30 54( Open Reading Frame) .该基因 ORF长 30 54bp,在核苷酸水平上与已报道的 put A基因有 94 %一致性 .其推断性的编码产物在氨基酸水平上与 put A编码产物脯氨酸脱氢酶 ( Pro DH)有 95%一致性 .利用 Tn5gus A5诱变的方法获得了该同源基因的标记置换突变体 ,该突变体在液体培养基 ( YMA)中的生长速率比野生菌株慢

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat shock protein 22 (HSP22) is an important member of small heat shock protein (sHSP) subfamily which plays a key role in the process of protecting cells, facilitating the folding of nascent peptides, and responding to stress. In the present study, the cDNA of HSP22 was cloned from Argopecten irradians (designated as AiHSP22) by rapid amplification cDNA end (RACE) based on the expressed sequence tags (ESTs). The full-length cDNA of AiHSP22 was of 1,112 bp, with an open reading frame of 588 bp encoding a polypeptide of 195 amino acids. The deduced amino acid sequence of AiHSP22 showed high similarity to previously identified HSP22s. The expression patterns of AiHSP22 mRNA in different tissues and in haemocytes of scallops exposed to Cd2+, Pb2+ or Cu2+ were investigated by real-time quantitative RT-PCR. The mRNA of AiHSP22 was constitutively expressed in all examined tissues, including haemocyte, muscle, kidney, gonad, gill and heart. The expression level in heart and muscle was higher than that in other tissues. The mRNA level of AiHSP22 in haemocytes was up-regulated after a 10 days exposure of scallops to Cu2+, Pb2+ and Cd2+. However, the expression of AiHSP22 did not increase linearly along with the rise of heavy metal concentration. Different concentrations of the same metal resulted in different effects on AiHSP22 expression. The sensitive response of AiHSP22 to Cu2+, Pb2+ and Cd2+ stress indicated that it could be developed as an indicator of exposure to heavy metals for the pollution monitoring programs in aquatic environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>NF-kappa B is a B-cell specific transcription factor that plays crucial roles in inflammation, immunity, apoptosis, development and differentiation. In the present study, a novel NF-kappa B-like transcription factor Relish was cloned from Chinese mitten crab Eriocheir sinensis (designated as EsRelish) by rapid amplification of cDNA ends (RACE) technique based on expressed sequence tag (EST). The full-length cDNA of EsRelish was of 5034 bp, consisting of a 5' untranslated region (UTR) of 57 bp, a 3' UTR of 1335 bp with two mRNA instability motifs (ATTTA), a polyadenylation signal sequence (AATAAA) and a poly (A) tail, and an open reading frame (ORF) of 3645 bp encoding a polypeptide of 1214 amino acids with a calculated molecular mass of 134.8 kDa and a theoretical isoelectric point of 5.26. There were a typical Rel homology domain (RHD), two nuclear localization signal (NLS) sequences (KR), an inhibitor kappa B (I kappa B)-like domain with six ankyrin repeats, a PEST region and a death domain in the deduced amino acid sequence of EsRelish. Conserved domain, higher similarity with other Rel/NF-kappa Bs and phylogenetic analysis suggested that EsRelish was a member of the NF-kappa B family. Quantitative real-time RT-PCR was employed to detect the mRNA transcripts of EsRelish in different tissues and its temporal expression in hemocytes of E. sinensis challenged with Pichia methanolica and Listonella anguillarum. The EsRelish mRNA was found to be constitutively expressed in a wide range of tissues. It could be mainly detected in the hemocytes, gonad and hepatopancreas, and less degree in the gill, muscle and heart. The expression level of EsRelish mRNA in hemocytes was up-regulated from at 3, 6, 9 and 12 h after P. methanolica challenge. In L. anguillarum challenge, it was up-regulated at 9, 12 and 24 h. The results collectively indicated that EsRelish was potentially involved in the immune response against fungus and bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonic anhydrase (CA), an enzyme that catalyzes the interconversion of CO2 and HCO3-, has a critical role in inorganic carbon acquisition in many kingdoms, including animals, plants, and bacteria. In this study, the full-length cDNA of the CA gene from Porphyra yezoensis Ueda (denoted as PyCA) was cloned by using an expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE). The nucleotide sequence of PyCA consists of 1,153 bp, including a 5' untranslated region (UTR) of 177 bp, a 3' UTR of 151 bp, and an open reading frame (ORF) of 825 bp that can be translated into a 274-amino-acid putative peptide with a molecular mass (M) of 29.8 kDa and putative isoelectric point (pI) of 8.51. The predicted polypeptide has significant homology to the beta-CA from bacteria and unicellular algae, such as Porphyridium purpureum. The mRNA in filamentous thalli, leafy thalli, and conchospores was examined, respectively, by real-time fluorescent quantitative PCR (qPCR), and the levels of PyCA are different at different stages of the life cycle. The lowest level of mRNA was observed in leafy thalli, and the level in filamentous thalli and in the conchospores was 4-fold higher and 10-fold higher, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxiredoxin V (PRX V) is known as an atypical 2-cysteine peroxiredoxin that protects the organisms against various oxidative stresses and functions in signal transduction. The cDNA of a PRX V gene (designated as CfPRX) was cloned from scallop Chlamys farreri. The full-length sequence of CfPRX cDNA was of 2,179 bp with a 564 bp open reading frame encoding a peptide of 187 amino acids. Sequence comparison showed that CfPRX shared higher identities with PRX Vs than that with other isoforms of PRX, indicating CfPRX was a member of the PRX V family. Fluorescent real-time quantitative PCR analysis revealed the presence of CfPRX transcripts in gill filaments, adductor muscle, heart, gonad, kidney and hemocytes, and the stimulation of Listonella anguillarum significantly (P < 0.01) enhanced the mRNA expression of CfPRX in hemocyte. These results indicated that CfPRX was a constitutive and inducible acute-phase protein which was involved in the immune resistance to L. anguillarum stimulation.