967 resultados para Oil yield


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry's technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry's services to be offered through cloud-based “apps.”

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Root-lesion nematode (Pratylenchus thornei) significantly reduces wheat yields in the northern Australian grain region. Canola is thought to have a 'biofumigation' potential to control nematodes; therefore, a field experiment was designed to compare canola with other winter crops or clean-fallow for reducing P. thornei population densities and improving growth of P. thornei-intolerant wheat (cv. Batavia) in the following year. Immediately after harvest of the first-year crops, populations of P. thornei were lowest following various canola cultivars or clean-fallow (1957-5200 P. thornei/kg dry soil) and were highest following susceptible wheat cultivars (31 033-41 294/kg dry soil). Unexpectedly, at planting of the second-year wheat crop, nematode populations were at more uniform lower levels (<5000/kg dry soil), irrespective of the previous season's treatment, and remained that way during the growing season, which was quite dry. Growth and grain yield of the second-year wheat crop were poorest on plots previously planted with canola or left fallow due to poor colonisation with arbuscular mycorrhizal (AM) fungi, with the exception of canola cv. Karoo, which had high AM fungal colonisation and low wheat yields. There were significant regressions between growth and yield parameters of the second-year wheat and levels of AMF following the pre-crop treatments. Thus, canola appears to be a good crop for reducing P. thornei populations, but AM fungal-dependence of subsequent crops should be considered, particularly in the northern Australian grain region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacy of chlorothalonil and paraffinic oil alone and in combinations with the registered fungicides propiconazole, tebuconazole, difenoconazole, epoxiconazole and pyrimethanil was evaluated in a field experiment over two cropping cycles in 2013 and 2014 in Northern Queensland, Australia, for control of yellow Sigatoka (caused by Mycosphaerella musicola) of banana. The predominantly applied by the banana industry treatment mancozeb with paraffinic oil was included for comparison. The results from the two cropping cycles suggested that all chemicals used with paraffinic oil were as effective or more effective than when applied with chlorothalonil, and chlorothalonil alone. Difenoconazole and epoxiconazole with paraffinic oil followed by propiconazole with paraffinic oil were the most effective treatments. Pyrimethanil and tebuconazole plus chlorothalonil were the least effective treatments. None of the chemical treatments was phytotoxic or reduced yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid lubricant nanoparticles in suspension in oil are good lubricating options for practical machinery. In this article, we select a range of dispersants, based on their polar moieties, to suspend 50-nm molybdenum disulfide particles in an industrial base oil. The suspension is used to lubricate a steel on steel sliding contact. A nitrogen-based polymeric dispersant (aminopropyl trimethoxy silane) with a free amine group and an oxygen-based polymeric dispersant (sorbital monooleate) when grafted on the particle charge the particle negatively and yield an agglomerate size which is almost the same as that of the original particle. Lubrication of the contact by these suspensions gives a coefficient of friction in the similar to 0.03 range. The grafting of these surfactants on the particle is shown here to be of a chemical nature and strong as the grafts survive mechanical shear stress in tribology. Such grafts are superior to those of other silane-based test surfactants which have weak functional groups. In the latter case, the particles bereft of strong grafts agglomerate easily in the lubricant and give a coefficient of friction in the 0.08-0.12 range. This article investigates the mechanism of frictional energy dissipation as influenced by the chemistry of the surfactant molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristic of biodiesel fuel production from transesterification of soybean oil is studied. The reactant solution is the mixture of soybean oil, methanol, and solvent. A new lipase immobilization method, textile cloth immobilization, was developed in this study. Immobilized Candida lipase sp. 99-125 was applied as the enzyme catalyst. The effect of flow rate of reaction liquid, solvents, reaction time, and water content on the biodiesel yield is investigated. Products analysis shows that the main components in biodiesel are methyl sterate, methyl hexadecanoate, methyl oleate, methyl linoleate, and methyl linolenate. The test results indicate that the maximum yield of biodiesel of 92% was obtained at the conditions of hexane being the solvent, water content being 20 wt%, and reaction time being 24 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloidal CdSe and CdS quantum dots were synthesized at low temperatures (60-90 degrees C) by a two-phase approach at a toluene-water interface. Oil-soluble cadmium myristate (Cd-MA) was used as cadmium source, and water-soluble Na2S, thiourea, NaHSe, Na2SeSO3, and selenourea were used as sulfur and selenium sources, respectively. When a cadmium precursor in toluene and a selenium precursor in water were mixed, CdSe nanocrystals were achieved at a toluene-water interface in the range of 1.2-3.2 nm in diameter. Moreover, we also synthesized highly luminescent CdSe/CdS core-shell quantum dots by a two-phase approach using poorly reactive thiourea as sulfur source in an autoclave at 140 degrees C or under normal pressure at 90 degrees C. Colloidal solutions of CdSe/CdS core-shell nanocrystals exhibit a photoluminescence quantum yield (PL QY) up to 42% relative to coumarin 6 at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An overview of the studies carried out in our laboratories on supercritical fluid extraction (SFE) of volatile oils from seven aromatic plants: pennyroyal (Mentha pulegium L.), fennel seeds (Foeniculum vulgare Mill.), coriander (Coriandrum sativum L.), savory (Satureja fruticosa Beguinot), winter savory (Satureja montana L.), cotton lavender (Santolina chamaecyparisus) and thyme (Thymus vulgaris), is presented. A flow apparatus with a 1 L extractor and two 0.27 L separators was built to perform studies at temperatures ranging from 298 to 353 K and pressures up to 30.0 MPa. The best compromise between yield and composition compared with hydrodistillation (HD) was achieved selecting the optimum experimental conditions of extraction and fractionation. The major differences between HD and SFE oils is the presence of a small percentage of cuticular waxes and the relative amount of thymoquinone, an oxygenated monoterpene with important biological properties, which is present in the oils from thyme and winter savory. On the other hand, the modeling of our data on supercritical extraction of volatile oil from pennyroyal is discussed using Sovova's models. These models have been applied successfully to the other volatile oil extractions. Furthermore, other experimental studies involving supercritical CO2 carried out in our laboratories are also mentioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different oil-containing substrates, namely, used cooking oil (UCO), fatty acids-byproduct from biodiesel production (FAB) and olive oil deodorizer distillate (OODD) were tested as inexpensive carbon sources for the production of polyhydroxyalkanoates (PHA) using twelve bacterial strains, in batch experiments. The OODD and FAB were exploited for the first time as alternative substrates for PHA production. Among the tested bacterial strains, Cupriavidus necator and Pseudomonas resinovorans exhibited the most promising results, producing poly-3-hydroxybutyrate, P(3HB), form UCO and OODD and mcl-PHA mainly composed of 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD) monomers from OODD, respectively. Afterwards, these bacterial strains were cultivated in bioreactor. C. necator were cultivated in bioreactor using UCO as carbon source. Different feeding strategies were tested for the bioreactor cultivation of C. necator, namely, batch, exponential feeding and DO-stat mode. The highest overall PHA productivity (12.6±0.78 g L-1 day-1) was obtained using DO-stat mode. Apparently, the different feeding regimes had no impact on polymer thermal properties. However, differences in polymer‟s molecular mass distribution were observed. C. necator was also tested in batch and fed-batch modes using a different type of oil-containing substrate, extracted from spent coffee grounds (SCG) by super critical carbon dioxide (sc-CO2). Under fed-batch mode (DO-stat), the overall PHA productivity were 4.7 g L-1 day-1 with a storage yield of 0.77 g g-1. Results showed that SCG can be a bioresource for production of PHA with interesting properties. Furthermore, P. resinovorans was cultivated using OODD as substrate in bioreactor under fed-batch mode (pulse feeding regime). The polymer was highly amorphous, as shown by its low crystallinity of 6±0.2%, with low melting and glass transition temperatures of 36±1.2 and -16±0.8 ºC, respectively. Due to its sticky behavior at room temperature, adhesiveness and mechanical properties were also studied. Its shear bond strength for wood (67±9.4 kPa) and glass (65±7.3 kPa) suggests it may be used for the development of biobased glues. Bioreactor operation and monitoring with oil-containing substrates is very challenging, since this substrate is water immiscible. Thus, near-infrared spectroscopy (NIR) was implemented for online monitoring of the C. necator cultivation with UCO, using a transflectance probe. Partial least squares (PLS) regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18 g L-1, 2.37 g L-1 and 1.58 g L-1 for biomass, UCO and PHA, respectively, which indicates the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. UCO and OODD are low cost substrates with potential to be used in PHA batch and fed-batch production. The use of NIR in this bioprocess also opened an opportunity for optimization and control of PHA production process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis deals with the different properties and characteristics of oil of lemon grass.. The oil of lemongrass (Cymbopogon flexuosus) is one of the most important essential oils. It will continue to be one of the "big ten" of our essential oils1. Lemongrass oil is obtained from certain species of grasses of the genus cymbopogon. The genus consists of about 80 species, 10 to 12 of which are known to occur in India. Lemongrass is a stoloniferous plant. The plant grows wild in many tropical andsemitropical parts of Asia, Africa and in parts of Central America and South America. For the extraction of the oil however only cultivated lemongrass is employed. The trade distinguishes two Principal types of lemongrass oil, viz. the East Indian Oil and West Indian Oil. There was much confusion, years ago, about the taxonomy of the plants which yield theEast Indian and West Indian types of lemongrass oil, however Stapf2 ended the long controversy of identifying the plant yielding the East Indian type oil as Cymbopogon flexuosus (D.C.) Stapf and the plant yielding the West Indian type oil as Cymbopogon citrates (D.C.) stapf. The 2 plants have_been named variously also Andropogon nardus var. Flexuosus Hack or A. citratus D.C. respectively

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine fungus BTMFW032, isolated from seawater and identified as Aspergillus awamori, was observed to produce an extracellular lipase, which could reduce 92% fat and oil content in the effluent laden with oil. In this study, medium for lipase production under submerged fermentation was optimized statistically employing response surface method toward maximal enzyme production. Medium with soyabean meal- 0.77% (w/v); (NH4)2SO4-0.1 M; KH2PO4-0.05 M; rice bran oil-2% (v/v); CaCl2-0.05 M; PEG 6000-0.05% (w/v); NaCl-1% (w/v); inoculum-1% (v/v); pH 3.0; incubation temperature 35 8C and incubation period-five days were identified as optimal conditions for maximal lipase production. The time course experiment under optimized condition, after statistical modeling, indicated that enzyme production commenced after 36 hours of incubation and reached a maximum after 96 hours (495.0 U/ml), whereas maximal specific activity of enzyme was recorded at 108 hours (1164.63 U/mg protein). After optimization an overall 4.6- fold increase in lipase production was achieved. Partial purification by (NH4)2SO4 precipitation and ion exchange chromatography resulted in 33.7% final yield. The lipase was noted to have a molecular mass of 90 kDa and optimal activity at pH 7 and 40 8C. Results indicated the scope for potential application of this marine fungal lipase in bioremediation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet–genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the present studies was to determine effects of basal dietary forage source on the response of milk fatty acid composition to an oil supplement based (2:1, respectively, w/w) on soybean oil and marine algae biomass oil high in cis-9, cis-12 C18:2n − 3 and C22:6n − 3, respectively. In Study 1, Hampshire × Dorset ewes (48) were randomly assigned to one of four treatments and 12 pens in a completely randomized design blocked on the basis of lambing date and number of lambs suckled. Control rations (60:40 forage:concentrate, dry matter (DM) basis) based on alfalfa pellets (AP) or corn silage (CS) were fed from lambing. Beginning at 22 days postpartum, three pens of ewes fed AP and three pens of ewes fed CS were supplemented with oil (30 g/kg of ration DM) in place of corn meal. Average ewe DM intake (DMI) and average daily gain (ADG) were measured weekly. Milk yield and composition were measured at 42 days postpartum. DMI was lower (P<0.02) for CS and for oil, but milk yield was not affected by forage source or oil supplementation. Milk fat content was higher for oil (P<0.10) and milk protein content was higher for AP (P<0.04). Total CLA concentration (g/100 g fatty acids) increased (P<0.01) with CS and oil, and the response to oil was greater for AP (P<0.04). Similarly, total trans-C18:1 and C22:6ω−3 concentrations were higher for CS and oil, but the response to oil was greater for CS (P<0.06 and P<0.01, respectively). In Study 2, the experiment was repeated using alfalfa haylage (AH) instead of AP. The DMI decreased (P<0.05) with oil feeding, but was not affected by forage source. Milk yield was decreased by feeding oil with AH, but not by feeding oil with CS (P<0.03). Milk fat content tended to be increased by feeding oil with AH, but tended to be decreased by feeding oil with CS (P<0.08). Total CLA concentration was increased (P<0.01) for AH versus CS and by oil, and the response to oil supplementation was greater for AH (P<0.01). In contrast, total trans-C18:1 concentration was higher for CS versus AH, with a greater response to oil for CS (P<0.05). Feeding marine oil increased the C22:6ω−3 (P<0.01) concentration, and the response was greater for AH (P<0.04). To further characterize the response of milk fat composition to dietary oil in ewes, a third study used six pens of three ewes each assigned to either the control CS diet used for Study 2 or the same diet supplemented with 45 g/kg (DM basis) of the oil mixture. Feeding oil had no effect on DMI, milk yield or milk fat concentration, but again increased (P<0.001) total trans-C18:1 and C22:6ω−3 concentrations and numerically increased (114%) total CLA concentration. Milk fatty acid composition responses to supplemental vegetable and marine oils were affected by forage source. Milk trans-C18:1 concentration was higher when CS was fed in Studies 1 and 2, but the effect of forage species on CLA concentration differed between studies, which may reflect differences in diet PUFA content and consumption, as well as amounts of dietary starch and fiber consumed. Despite large increases in trans-C18:1 concentration, milk fat content was not decreased by feeding unsaturated oils to ewes, even at diet levels of 45 g/kg of ration DM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/ kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18: 1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r(2) = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4: 0 to 18: 0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20: 5 n-3, and 22: 6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18: 1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Delta(4-10) and Delta(12-15)), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the potential benefits of cis-9, trans- 11 conjugated linoleic acid (CLA) for human health there is a need to develop effective strategies for enhancing milk fat CLA concentrations. In this experiment, the effect of forage type and level of concentrate in the diet on milk fatty acid composition was examined in cows given a mixture of fish oil and sunflower oil. Four late lactation Holstein-British Friesian cows were used in a 4 x 4 Latin-square experiment with a 2 x 2 factorial arrangement of treatments and 21-day experimental periods. Treatments consisted of grass (G) or maize (M) silage supplemented with low (L) or high (H) levels of concentrates (65: 35 and 35: 65; forage: concentrate ratio, on a dry matter (DM) basis, respectively) offered as a total mixed ration at a restricted level of intake (20 kg DM per day). Lipid supplements (30 g/kg DM) containing fish oil and sunflower oil (2: 3 w/w) were offered during the last 14 days of each experimental period. Treatments had no effect on total DM intake, milk yield, milk constituent output or milk fat content, but milk protein concentrations were lower (P<0.05) for G than M diets (mean 43.0 and 47.3 g/kg, respectively). Compared with grass silage, milk fat contained higher (P<0.05) amounts Of C-12: 0, C-14: 0, trans C-18:1 and long chain >= C20 (n-3) polyunsaturated fatty acids (PUFA) and lower (P<0.05) levels Of C-18:0 and trans C-18:2 when maize silage was offered. Increases in the proportion of concentrate in the diet elevated (P<0.05) C-18:2 (n-6) and long chain >= C20 (n-3) PUFA content, but reduced (P<0.05) the amount Of C-18:3 (n-3). Concentrations of trans-11 C-18:1 in milk were independent of forage type, but tended (P<0.10) to be lower for high concentrate diets (mean 7.2 and 4.0 g/100 g fatty acids, for L and H respectively). Concentrations of trans-10 C-18:1 were higher (P<0.05) in milk from maize compared with grass silage (mean 10.3 and 4.1 g/100 g fatty acids, respectively) and increased in response to high levels of concentrates in the diet (mean 4.1 and 10.3 g/100 g fatty acids, for L and H, respectively). Forage type had no effect (P>0.05) on total milk conjugated linoleic acid (CLA) (2.7 and 2.8 g/100 g fatty acids, for M and G, respectively) or cis-9, trans-11 CLA content (2.2 and 2.4 g/100 g fatty acids). Feeding high concentrate diets tended (P<0.10) to decrease total CLA (3.3 and 2.2 g/100 g fatty acids, for L and H, respectively) and cis-9, trans-11 CLA (2.9 and 1/7 g/100 g fatty acids) concentrations and increase milk trans-9, cis-11 CLA and trans-10, cis-12 CLA content. In conclusion, the basal diet is an important determinant of milk fatty acid composition when a supplement of fish oil and sunflower oil is given.