924 resultados para Oil pollution of soils
Resumo:
In this study, some limitations associated with modeling the hydraulic conductivity of soil improved with vertical drains are discussed. In addition, some limitations of conventional methodologies for deducing the hydraulic conductivity from oedometer or Rowe cell tests are investigated. An alternative approach for estimating the hydraulic conductivity in soils improved by vertical drains is discussed. This methodology will allow for simpler finite element modeling of consolidation due to vertical drains. The effectiveness of this technique has been demonstrated using a field study.
Resumo:
Virgin olive oil is a high quality natural product obtained only by physical means. In addition to triacylglycerols it contains nutritionally important polar and non-polar antioxidant phenols and other bioactive ingredients. The polar fraction is a complex mixture of phenolic acids, simple phenols, derivatives of the glycosides oleuropein and ligstroside, lignans, and flavonoids. These compounds contribute significantly to the stability, flavor, and biological value of virgin olive. In the various stages of production, during storage and in the culinary uses, polar phenols and other valuable bioactive ingredients may be damaged. Oxidation, photo-oxidation, enzymic hydrolysis and heating at frying temperatures have a serious adverse effect. Due to the biological importance of the oil and its unique character, analytical methods have been developed to evaluate antioxidant activity or analyse complex phenol mixtures. These are based on radical scavenging assays and chromatographic techniques. Hyphenated methods are also used including liquid chromatography-mass spectrometry and liquid chromatography-nuclear magnetic resonance spectroscopy.
Resumo:
Indústrias metalúrgicas de produção de ligas metálicas podem por em risco toda a área envolvente, nomeadamente a qualidade das águas (superficiais e subterrâneas), dos solos e do ar, sempre que não existam infraestruturas e planos adequados de gestão destes resíduos. No caso em estudo, a unidade industrial situa-se na bacia do rio São Francisco, no estado brasileiro de Minas Gerais, e nos mais de quarenta anos de funcionamento tem produzido inúmeros problemas ambientais. Este estudo baseia-se nos primeiros resultados referentes aos solos da envolvente, tendo como objetivos a identificação dos principais contaminantes e a definição da área contaminada, de forma a avaliar a eficácia de projetos futuros de recuperação.
Resumo:
Zero-valent iron nanoparticles (nZVIs) are often used in environmental remediation. Their high surface area that is associated with their high reactivity makes them an excellent agent capable of transforming/degrading contaminants in soils and waters. Due to the recent development of green methods for the production of nZVIs, the use of this material became even more attractive. However, the knowledge of its capacity to degrade distinct types of contaminants is still scarce. The present work describes the study of the application of green nZVIs to the remediation of soils contaminated with a common anti-inflammatory drug, ibuprofen. The main objectives of this work were to produce nZVIs using extracts of grape marc, black tea and vine leaves, to verify the degradation of ibuprofen in aqueous solutions by the nZVIs, to study the remediation process of a sandy soil contaminated with ibuprofen using the nZVIs, and to compare the experiments with other common chemical oxidants. The produced nZVIs had nanometric sizes and were able to degrade ibuprofen (54 to 66% of the initial amount) in aqueous solutions. Similar remediation efficiencies were obtained in sandy soils. In this case the remediation could be enhanced (achieving degradation efficiencies above 95%) through the complementation of the process with a catalyzed nZVI Fenton-like reaction. These results indicate that this remediation technology represents a good alternative to traditional and more aggressive technologies.
Resumo:
The prescribed fire is a technique that is often used, it has several advantages. Pedological and hydropedological techniques were tested to assess the prescribed fire changes may cause in soils. This work was performed in Tresminas area (Vila Pouca de Aguiar, Northern Portugal), during February and March 2011. In the present study we applied several techniques. For the field sampling was followed the ISO 10381-1[1], ISO 10381-2[2], and FAO rules [3], as well as were used a grid with 17 points for measuring the soil parameters. During the fire, we have tried to check, with the assistance of the Portuguese Forestry Authority, some important parameters such as, the propagation speed, the size of the flame front and the intensity of energy emitted per unit area. Before the fire, was collected carefully soil disturbed and undisturbed samples for laboratory analysis, and measured soil water content; we also have placed four sets of thermocouples for measuring soil temperature. After the fire, were collected the thermocouples and new soil samples; the water content were measured in the soil and collected ashes. In the laboratory, after preparing and sieving the samples, were determined the soil particle size. The soil pH and electrical conductivity in water was also determined. The total carbon (TC) and inorganic carbon (IC)[4] was measured by a Shimadzu TOC-Vcsn. The water content in soil has not varied significantly before and after the fire, as well as soil pH and soil electrical conductivity. The TC and IC did not change, which was expected, since the fire not overcome the 200° C. Through the various parameters, we determined that the prescribed fire didn’t affect the soil. The low temperature of the fire and its rapid implementation that lead to the possible adverse effects caused by the wild fire didn’t occurred.
Resumo:
Field lab: Consulting lab
Resumo:
Field lab: Consulting lab
Resumo:
Field lab: Consulting lab
Resumo:
Soil moisture plays a cardinal role in sustaining eclological balance and agricultural development – virtually the very existence of life on earth. Because of the growing shortage of water resources, we have to use the available water most efficiently by proper management. Better utilization of rainfall or irrigation management depends largely on the water retention characteristics of the soil.Soil water retention is essential to life and it provides an ongoing supply of water to plants between periods of irrigation so as to allow their continued growth and survival.It is essential to maintain readily available water in the soil if crops are to sustain satisfactory growth. The plant growth may be retarded if the soil moisture is either deficient or excessive. The optimum moisture content is that moisture which leads to optimum growth of plant. When watering is done, the amount of water supplied should be such that the water content is equal to the field capacity that is the water remained in the saturated soil after gravitational drainage. Water will gradually be utilized consumptively by plants after the water application, and the soil moisture will start falling. When the water content in the soil reaches the value known as permanent wilting point (when the plant starts wilting) fresh dose of irrigation may be done so that water content is again raised to the field capacity of soil.Soil differ themselves in some or all the properties depending on the difference in the geotechnical and environmental factors. Soils serve as a reservoir of the nutrients and water required for crops.Study of soil and its water holding capacity is essential for the efficient utilization of irrigation water. Hence the identification of the geotechnical parameters which influence the water retention capacity, chemical properties which influence the nutrients and the method to improve these properties have vital importance in irrigation / agricultural engineering. An attempt in this direction has been made in this study by conducting the required tests on different types of soil samples collected from various locations in Trivandrum district Kerala, with and without admixtures like coir pith, coir pith compost and vermi compost. Evaluation of the results are presented and a design procedure has been proposed for a better irrigation scheduling and management.
Resumo:
The Thesis deals with the entire estuarine system in totality on several parameters related to hydrography, ecology of biota, productivity and also the effects of pollution. The objective of this study has been to review the systems physical, chemical and biological features through varying periods of time at locations where human interference is high so that an overall assessment of the changing ecology could be made so as to impress on the scientific community whether remedial measures could be undertaken in sensitive areas. It is also the objective of this study to point out thrust areas where concerted efforts from a larger body of scientists and administrators who can sit together and chalk out programmes for a co-operative endeavor in monitoring the most sensitive areas and also suggest ways and means to exploit the rich and diverse resources at optimum levels with emphasis on conservation and protection from environmental degradation resulting in depletion of resources. Areas also have been identified which are potentially more productive where aquaculture could be intensified
Resumo:
Selenium (Se) is an element with important health implications that is emitted in significant amounts from volcanoes. Attracted by the fertility of volcanic soils, around 10% of the world population lives within 100 km of an active volcano. Nevertheless, the behaviour of Se in volcanic environments is poorly understood. Therefore, the main aim of this thesis is to investigate the role of soils in the Se cycling in volcanic environments. Prior to the geochemical studies, precise and accurate methods for the determination of Se contents, speciation and isotopic signatures were developed. Afterwards, a combination of field studies and lab controlled experiments were performed with soils from two contrasting European volcanic settings: Mount Etna in Sicily (Italy) and Mount Teide in Tenerife (Spain). The results showed a strong link between Se behaviour and soil development, indicating that Se mobility in volcanic soils is controlled by sorption processes and soil mineralogy.
Resumo:
Lime treatment of hydrocarbon-contaminated soils offers the potential to stabilize and solidify these materials, with a consequent reduction in the risks associated with the leachate emanating from them. This can aid the disposal of contaminated soils or enable their on-site treatment. In this study, the addition of hydrated lime and quicklime significantly reduced the leaching of total petroleum hydrocarbons (TPH) from soils polluted with a 50:50 petrol/diesel mixture. Treatment with quicklime was slightly more effective, but hydrated lime may be better in the field because of its ease of handling. It is proposed that this occurs as a consequence of pozzolanic reactions retaining the hydrocarbons within the soil matrix. There was some evidence that this may be a temporary effect, as leaching increased between seven and 21 days after treatment, but the TPH concentrations in the leachate of treated soils were still one order of magnitude below those of the control soil, offering significant protection to groundwater. The reduction in leaching following treatment was observed in both aliphatic and aromatic fractions, but the latter were more affected because of their higher solubilty. The results are discussed in the context of risk assessment, and recommendations for future research are made.