934 resultados para Oil, Gas, and Energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the impact of climate change on comfort and energy performance in offices in relation to the influence of building design and occupants. It focuses on a typical cellular office room in the context of Athens, Greece, as input for a parametric study using the building simulation software EnergyPlus. Three different building design variations are combined with two different occupant scenarios and 4 different weather data sets for IPCC climate change scenario A2.

For naturally ventilated buildings adaptive thermal comfort is evaluated according to ASHRAE Standard 55 and EN 15251. For mixed mode context evaluation is focused on greenhouse gas emissions and peak heating / cooling loads. Results indicate significant impact of the climate change on thermal comfort, and deviations between both comfort models. Comparing climate change, building design and occupant scenarios indicates that building design is the predominant influence on thermal comfort, whereas occupants are the predominant influence on greenhouse gas emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coffee seeds are a source for obtaining oil which is used in the candy, soluble coffee, and cosmetics industries. The main purpose of this study was the investigation of the lipid profile and thermal behavior of the roasted and in nature coffee oil of Arabica and Robusta species, using thermogravimetry, differential thermal analysis, derivative thermogravimetry, differential scanning calorimetry (DSC), and modulated DSC. Details concerning the thermal decomposition as well as data of the kinetic parameters have been described here. The kinetic studies were evaluated from several heating rates with a sample mass of 10 mg in open crucible under nitrogen atmospheres. The obtained data were evaluated with the isoconversional kinetic method, where the values of activation energy (Ea/kJ mol-1) were evaluated in function of the conversion degree (α). In addition, this oil was evaluated by modulated DSC from 25 to -60 °C, where the transition phase behavior was verified. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cassava leaves have been widely used as a protein source for ruminants in the tropics. However, these leaves contain high level of hydro-cyanic acid (HCN) and condensed tannins (CT). There are evidences that making hay can eliminate more than 90% of HCN and that long-term storage can reduce CT levels. A complete randomized design with four replicates was conducted to determine the effect of different storage times (0-control, 60, 90 and 120 days) on chemical composition, in vitro rumen fermentation kinetics, digestibility and energy value of cassava leaves hay. Treatments were compared by analyzing variables using the GLM procedure (SAS 9.1, SAS Institute, Inc., Cary, NC). Crude protein (CP) and ether extract (EE) of the cassava hay were not affected (P > 0.05) by storage time (17.7% and 3.0%, respectively). Neutral detergent fiber, acid detergent fiber, total carbohydrate and non-fiber carbohydrate were not affected either (P>0.05) by storage time (47.5, 32.6, 72.3 and 25.8% respectively). However, other parameters were influenced. CT was lower (P<0.05) in hay after 120 days of storage compared with control (1.75% versus 3.75%, respectively). Lignin and insoluble nitrogen in neutral detergent, analyzed without sodium sulfite, were higher (P<0.01) after 120 days of storage, compared with the control (11.22 versus 13.57 and 1.65 versus 3.81% respectively). This suggests that the CT has bound to the fiber or CP and became inactive. Consequently, the in vitro digestibility of organic matter (50.36%), total digestible nutrients (44.79%) and energy (1.61 Mcal/KgMS), obtained from gas production data at 72 h of incubation, has increased (P<0.05) with storage times (56.83%, 51.53% and 1.86 Mcal/KgMS, respectively). The chemical composition and fermentative characteristics of cassava hay suffered variations during the storage period. The best values were obtained after 90 days of storage. This is probably due to the reduction in condensed tannins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cogeneration may be defined as the simultaneous production of electric power and useful heat from the burning of a single fuel. This technique of combined heat and power production has been applied in both the industrial and tertiary sectors. It has been mainly used because of its overall efficiency, and the guarantee of electricity with a low level of environmental impact. The compact cogeneration systems using internal combustion engine as prime movers are thoroughly applied because of the good relationship among cost and benefit obtained in such devices. The cogeneration system of this study consists of an internal combustion engine using natural gas or biogas as fuel, combined with two heat exchangers and an absorption chiller utilising water-ammonia as working mixture. This work presents an energetic and economic comparison between natural gas and biogas as fuel used for the system proposed. The results are useful to identify the feasible applications for this system, such as residential sector in isolated areas, hotels, universities etc. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Japanese cornmint, also known as menthol mint (Mentiza canadensis L. syn M. arvensis L.), is an essential oil crop cultivated in several countries in Asia and South America. The plant is currently the only commercially viable source for natural menthol as a result of the high concentration of menthol in the oil compared with other crops. The hypothesis of this study was that harvesting at regular intervals within a 24-hour period would have an effect on essential oil concentration and composition of Japanese cornmint grown at high altitude in northern Wyoming. Flowering plants were harvested every 2 hours on 7 to 8 Aug. and on 14 to 15 Aug. and the essential oil was extracted by steam distillation and analyzed by gas chromatography mass spectroscopy (GC-MS). The effects of harvest date (Harvest 1 and Harvest 2) and harvest time (12 times within a 24-hour period) were significant on oil concentration and yield of menthol, but only harvest date was significant on the concentration of menthol in the oil. The interaction effect of harvest date and harvest time was significant on water content and on the concentrations of menthol and menthofuran in the oil and on the yield of limonene, menthol, and menthofuran. Overall, the oil concentration in grams per 100 g dried material for the two harvests (1.26 and 1.45, respectively), the concentration of menthol in the oil (67.2% and 72.9%, respectively), and menthol yield (1066 to 849 mg/100 g dried biomass) were higher in plants at Harvest 2 as compared with plants at Harvest 1. The oil concentration was higher in plants harvested at 1100 HR or at 1300 am and lowest in the plants harvested at 1500 BR. Menthol yield was the highest in plants harvested at 1300 HR and lowest in the plants harvested at 0700 HR, 1900 am, or at 0300 HR. This study demonstrated that harvesting time within a 24-hour period and harvest date (maturity of the crop) may affect essential oil concentration and composition of Japanese cornmint grown at high altitude in northern Wyoming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the precautionary principle is reviewed alongside the process of international implementation. Adoption of the precautionary principle is advocated to deal with energy choices as a mechanism to account for potential climate change impacts, notwithstanding the debate on scientific uncertainty on the links between solar activity, greenhouse gas concentration and climate. However, it is also recognized that the widespread application of the precautionary principle to energy choices does not seem to be taking place in the real world. Relevant concrete barriers are identified stemming from the intrinsic logic governing the hegemonic economic system, driving the energy choices by economic surplus and rent generation potential, the existence of social asymmetries inside and among societies as well as by the absence of democratic global governance mechanisms, capable of dealing with climate change issues. Such perception seems to have been reinforced by the outcome of the United Nations Climate Change Conference, held in Copenhagen in December 2009. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the requirement for agriculture to be environmentally suitable there is a necessity to adopt indicators and methodologies approaching sustainability. In Brazil, biodiesel addition into diesel is mandatory and soybean oil is its main source. The material embodiment determines the convergence of inputs into the crop. Moreover, the material flows are necessary for any environmental analysis. This study evaluated distinct production scenarios, and also conventional versus GMO crops, through the material embodiment and energy analysis. GMO crops demanded less indirectly applied inputs. The energy balance showed linearity with yield, whereas for EROI, the increases in input and yield were not affected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO has proven to be a multifunctional material with important nanotechnological applications. ZnO nanostructures can be grown in various forms such as nanowires, nanorods, nanobelts, nanocombs etc. In this work, ZnO nanostructures are grown in a double quartz tube configuration thermal Chemical Vapor Deposition (CVD) system. We focus on functionalized ZnO Nanostructures by controlling their structures and tuning their properties for various applications. The following topics have been investigated: 1. We have fabricated various ZnO nanostructures using a thermal CVD technique. The growth parameters were optimized and studied for different nanostructures. 2. We have studied the application of ZnO nanowires (ZnONWs) for field effect transistors (FETs). Unintentional n-type conductivity was observed in our FETs based on as-grown ZnO NWs. We have then shown for the first time that controlled incorporation of hydrogen into ZnO NWs can introduce p-type characters to the nanowires. We further found that the n-type behaviors remained, leading to the ambipolar behaviors of hydrogen incorporated ZnO NWs. Importantly, the detected p- and n- type behaviors are stable for longer than two years when devices were kept in ambient conditions. All these can be explained by an ab initio model of Zn vacancy-Hydrogen complexes, which can serve as the donor, acceptors, or green photoluminescence quencher, depend on the number of hydrogen atoms involved. 3. Next ZnONWs were tested for electron field emission. We focus on reducing the threshold field (Eth) of field emission from non-aligned ZnO NWs. As encouraged by our results on enhancing the conductivity of ZnO NWs by hydrogen annealing described in Chapter 3, we have studied the effect of hydrogen annealing for improving field emission behavior of our ZnO NWs. We found that optimally annealed ZnO NWs offered much lower threshold electric field and improved emission stability. We also studied field emission from ZnO NWs at moderate vacuum levels. We found that there exists a minimum Eth as we scale the threshold field with pressure. This behavior is explained by referring to Paschen’s law. 4. We have studied the application of ZnO nanostructures for solar energy harvesting. First, as-grown and (CdSe) ZnS QDs decorated ZnO NBs and ZnONWs were tested for photocurrent generation. All these nanostructures offered fast response time to solar radiation. The decoration of QDs decreases the stable current level produced by ZnONWs but increases that generated by NBs. It is possible that NBs offer more stable surfaces for the attachment of QDs. In addition, our results suggests that performance degradation of solar cells made by growing ZnO NWs on ITO is due to the increase in resistance of ITO after the high temperature growth process. Hydrogen annealing also improve the efficiency of the solar cells by decreasing the resistance of ITO. Due to the issues on ITO, we use Ni foil as the growth substrates. Performance of solar cells made by growing ZnO NWs on Ni foils degraded after Hydrogen annealing at both low (300 °C) and high (600 °C) temperatures since annealing passivates native defects in ZnONWs and thus reduce the absorption of visible spectra from our solar simulator. Decoration of QDs improves the efficiency of such solar cells by increasing absorption of light in the visible region. Using a better electrolyte than phosphate buffer solution (PBS) such as KI also improves the solar cell efficiency. 5. Finally, we have attempted p-type doping of ZnO NWs using various growth precursors including phosphorus pentoxide, sodium fluoride, and zinc fluoride. We have also attempted to create p-type carriers via introducing interstitial fluorine by annealing ZnO nanostructures in diluted fluorine gas. In brief, we are unable to reproduce the growth of reported p-type ZnO nanostructures. However; we have identified the window of temperature and duration of post-growth annealing of ZnO NWs in dilute fluorine gas which leads to suppression of native defects. This is the first experimental effort on post-growth annealing of ZnO NWs in dilute fluorine gas although this has been suggested by a recent theory for creating p-type semiconductors. In our experiments the defect band peak due to native defects is found to decrease by annealing at 300 °C for 10 – 30 minutes. One of the major future works will be to determine the type of charge carriers in our annealed ZnONWs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysilicon cost impacts significantly on the photovoltaics (PV) cost and on the energy payback time. Nowadays, the besetting production process is the so called Siemens process, polysilicon deposition by chemical vapor deposition (CVD) from Trichlorosilane. Polysilicon purification level for PV is to a certain extent less demanding that for microelectronics. At the Instituto de Energía Solar (IES) research on this subject is performed through a Siemens process-type laboratory reactor. Through the laboratory CVD prototype at the IES laboratories, valuable information about the phenomena involved in the polysilicon deposition process and the operating conditions is obtained. Polysilicon deposition by CVD is a complex process due to the big number of parameters involved. A study on the influence of temperature and inlet gas mixture composition on the polysilicon deposition growth rate, based on experimental experience, is shown. Moreover, CVD process accounts for the largest contribution to the energy consumption of the polysilicon production. In addition, radiation phenomenon is the major responsible for low energetic efficiency of the whole process. This work presents a model of radiation heat loss, and the theoretical calculations are confirmed experimentally through a prototype reactor at our disposal, yielding a valuable know-how for energy consumption reduction at industrial Siemens reactors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The planar and axisymmetric variable-density flows induced in a quiescent gas by a concentrated source of momentum that is simultaneously either a source or a sink of energy are investigated for application to the description of the velocity and temperature far fields in laminar gaseous jets with either large or small values of the initial jet-to-ambient temperature ratio. The source fluxes of momentum and heat are used to construct the characteristic scales of velocity and length in the region where the density differences are of the order of the ambient density, which is slender for the large values of the Reynolds number considered herein. The problem reduces to the integration of the dimensionless boundary-layer conservation equations, giving a solution that depends on the gas transport properties but is otherwise free of parameters. The boundary conditions at the jet exit for integration are obtained by analysing the self-similar flow that appears near the heat source in planar and axisymmetric configurations and also near the heat sink in the planar case. Numerical integrations of the boundary-layer equations with these conditions give solutions that describe accurately the velocity and temperature fields of very hot planar and round jets and also of very cold plane jets in the far field region where the density and temperature differences are comparable to the ambient values. Simple scaling arguments indicate that the point source description does not apply, however, to cold round jets, whose far field region is not large compared with the jet development region, as verified by numerical integrations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crossroads of urban development and improved technology allowing oil and gas development in new areas can result in contentious community issues. The debate over one of the improved technologies – i.e., hydraulic fracturing – can be highly emotional. Consequently, industry must address community issues, earning trust and therefore a “social license to operate.” This paper provides fundamental knowledge of the social license to operate concept, validates its application to the oil and gas industry, particularly with respect to shale gas development, discusses the current status of social license in the unconventional development sphere, analyzes current ongoing efforts for shale gas developers to monitor and establish a social license, and identifies potential new methods of encouraging, establishing, and monitoring a social license to operate. The paper also proposes a new institutional framework in which to promote the social license to operate, “The Center for Social License to Operate in the Oil & Gas Industry.”

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate vs competitiveness? The European Commission published its proposal on the 2030 climate and energy framework on 22 January. Reflective of the current economic climate, it was accompanied by a report on energy prices and the Commission decided not to propose regulation on shale gas but to issue recommendations on environmental standards. The same day also saw the publication of a communication “For a European Industrial Renaissance”. Climate considerations no longer drive the agenda. The enthusiasm of 2007, when the “20/20/20” climate and energy targets were set for 2020, has diminished. The new reality has brought competitiveness to the top of the EU’s priority agenda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulgaria and Russia are entering the final phase of setting the conditions of their co-operation in the energy sector. A new gas contract is being negotiated because the currently applicable agreements will have expired by the end of 2012. The fate of two major energy projects – whose implementation depends on good co-operation between Sofia and Moscow: the Burgas– –Alexandroupolis oil pipeline and the construction of a Bulgarian nuclear power plant in Belene with Russian participation – is currently being decided. Another issue ever-present on the agenda is the future of the South Stream gas pipeline promoted by Russia, which is to run through Bulgarian territory. The outcome of all the aforementioned discussions and negotiations will determine for years the model of Bulgarian-Russian relations and may strongly affect the shape of the oil, gas and electricity markets in South-Eastern Europe.