157 resultados para Oikos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Community work and development - Now, that market economy is no longer faced with territorial boundaries, the spheres of life within the limits of local communities are gaining new importance in terms of sustained patterns of development. This extended meaning of local community as a place for mastering the challenges of life and as a framework for developing future-oriented solutions to social, ecological and economic problems, corresponds to the extended meaning of community-based social work as an effort to shape social life and generate social change. Community-economy follows the original sense of human economy, defined by Aristotle. It is the idea of the “oikos”, an economy for the satisfaction of needs of the “whole house” - of the young and the old, the healthy and sick, of the living and future generations and the not-human world. In this sense “oikonomia” means household management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenotypes of plants, and thus their ecology and evolution, can be affected by the environmental conditions experienced by their parents, a phenomenon called parental effects or transgenerational plasticity. However, whether such effects are just passive responses or represent a special type of adaptive plasticity remains controversial because of a lack of solid tests of their adaptive significance. Here, we investigated transgenerational effects of different nutrient environments on the productivity, carbon storage and flowering phenology of the perennial plant Plantago lanceolata, and whether these effects are influenced by seasonal variation in the maternal environment. We found that maternal environments significantly affected the offspring phenotype, and that plants consistently produced more biomass and had greater root carbohydrate storage if grown under the same environmental conditions as experienced by their mothers. The observed transgenerational effects were independent of the season in which seeds had matured. We therefore conclude that transgenerational effects on biomass and carbon storage in P. lanceolata are adaptive regardless of the season of seed maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whereas many studies have addressed the mechanisms driving partial migration, few have focused on the consequences of partial migration on trophic dynamics, and integrated studies combining the two approaches are virtually nonexistent. Here we show that temperature affects seasonal partial migration of cyprinid fish from lakes to predation refuges in streams during winter and that this migration in combination with temperature affects the characteristics and phenology of lower trophic levels in the lake ecosystem. Specifically, our six-year study showed that the proportion of fish migrating was positively related to lake temperature during the pre-migration growth period, i.e. during summer. Migration from the lake occurred later when autumn water temperatures were high, and timing of return migration to the lake occurred earlier at higher spring water temperatures. Moreover, the winter mean size of zooplankton in the lake increased with the proportion of fish being away from the lake, likely as a consequence of decreased predation pressure. Peak biomass of phytoplankton in spring occurred earlier at higher spring water temperatures and with less fish being away from the lake. Accordingly, peak zooplankton biomass occurred earlier at higher spring water temperature, but relatively later if less fish were away from the lake. Hence, the time between phyto- and zooplankton peaks depended only on the amount of fish being away from the lake, and not on temperature. The intensity of fish migration thereby had a major effect on plankton spring dynamics. These results significantly contribute to our understanding of the interplay between partial migration and trophic dynamics, and suggest that ongoing climate change may significantly affect such dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying drivers of species diversity is a major challenge in understanding and predicting the dynamics of species-rich semi-natural grasslands. In particular in temperate grasslands changes in land use and its consequences, i.e. increasing fragmentation, the on-going loss of habitat and the declining importance of regional processes such as seed dispersal by livestock, are considered key drivers of the diversity loss witnessed within the last decades. It is a largely unresolved question to what degree current temperate grassland communities already reflect a decline of regional processes such as longer distance seed dispersal. Answering this question is challenging since it requires both a mechanistic approach to community dynamics and a sufficient data basis that allows identifying general patterns. Here, we present results of a local individual- and trait-based community model that was initialized with plant functional types (PFTs) derived from an extensive empirical data set of species-rich grasslands within the `Biodiversity Exploratories' in Germany. Driving model processes included above- and belowground competition, dynamic resource allocation to shoots and roots, clonal growth, grazing, and local seed dispersal. To test for the impact of regional processes we also simulated seed input from a regional species pool. Model output, with and without regional seed input, was compared with empirical community response patterns along a grazing gradient. Simulated response patterns of changes in PFT richness, Shannon diversity, and biomass production matched observed grazing response patterns surprisingly well if only local processes were considered. Already low levels of additional regional seed input led to stronger deviations from empirical community pattern. While these findings cannot rule out that regional processes other than those considered in the modeling study potentially play a role in shaping the local grassland communities, our comparison indicates that European grasslands are largely isolated, i.e. local mechanisms explain observed community patterns to a large extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecological interactions between different species are not fixed, but they may depend, at least to some extent, on the particular genotypes involved as well as on the environmental conditions experienced by previous generations. We used a set of natural genotypes of Arabidopsis thaliana, that previously experienced contrasting nutrient and herbivory conditions, to test for the influences of genetic variation and maternal effects on competitive interactions between Arabidopsis and the weedy annuals Anagallis arvensis and Senecio vulgaris. We used activated carbon to discriminate between resource competition and allelopathy components of plant-plant interactions. There was a clear competitive hierarchy: Senecio > Arabidopsis > Anagallis. Although we found no evidence for allelopathic potential of Arabidopsis, our results indicate that both Anagallis and Senecio exerted negative (direct or indirect) allelopathic effects on Arabidopsis. There were significant differences among Arabidopsis genotypes in their competitive effects on both neighbor species, as well as in their response to competition. Maternal environments significantly influenced not only the growth and fitness of Arabidopsis itself, but also its competitive effect on Anagallis. We found, however, no evidence that maternal environments affected the competitive effect on Senecio or overall competitive response of Arabidopsis. Generally, resource competition played a greater role than allelopathy, and genotype effects were more important than maternal effects. Our study demonstrates that ecological interactions, such as plant competition, are complex and multi-layered, and that, in particular, the influence of genetic variation on interactions with other species should not be overlooked.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a network of competing species, a competitive intransitivity occurs when the ranking of competitive abilities does not follow a linear hierarchy (A > B > C but C > A). A variety of mathematical models suggests that intransitive networks can prevent or slow down competitive exclusion and maintain biodiversity by enhancing species coexistence. However, it has been difficult to assess empirically the relative importance of intransitive competition because a large number of pairwise species competition experiments are needed to construct a competition matrix that is used to parameterize existing models. Here we introduce a statistical framework for evaluating the contribution of intransitivity to community structure using species abundance matrices that are commonly generated from replicated sampling of species assemblages. We provide metrics and analytical methods for using abundance matrices to estimate species competition and patch transition matrices by using reverse-engineering and a colonization-competition model. These matrices provide complementary metrics to estimate the degree of intransitivity in the competition network of the sampled communities. Benchmark tests reveal that the proposed methods could successfully detect intransitive competition networks, even in the absence of direct measures of pairwise competitive strength. To illustrate the approach, we analyzed patterns of abundance and biomass of five species of necrophagous Diptera and eight species of their hymenopteran parasitoids that co-occur in beech forests in Germany. We found evidence for a strong competitive hierarchy within communities of flies and parasitoids. However, for parasitoids, there was a tendency towards increasing intransitivity in higher weight classes, which represented larger resource patches. These tests provide novel methods for empirically estimating the degree of intransitivity in competitive networks from observational datasets. They can be applied to experimental measures of pairwise species interactions, as well as to spatio-temporal samples of assemblages in homogenous environments or environmental gradients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herbivory can affect plant community composition and diversity by removing biomass and reducing light competition. Herbivory may particularly benefit low growing species such as bryophytes, which are frequently limited by light competition. Gastropods are important herbivores of seed plants and cryptogams, furthermore, they can disperse propagules such as seeds and spores via endozoochory. However, whether gastropod herbivory can reduce the dominance of vascular plants and thereby promote the germination and establishment of endozoochorously dispersed bryophyte spores has never been tested experimentally. Moreover, it is unclear whether these possible interacting effects can influence bryophyte species richness. Here, we tested for endozoochorous spore dispersal by slugs, in combination with sowing of vascular plants, in a fully factorial common garden experiment. Enclosures contained either slugs previously fed with bryophyte sporophytes, control slugs, or no slugs. After 21 days the bryophyte cover was on average 2.8 times higher (3.9 versus 1.4) and after eight months the bryophyte species richness 2.6 times higher (5.8 versus 2.2) in enclosures containing slugs previously fed with bryophyte sporophytes than in the other treatments. Furthermore, after eight months high vascular plant cover reduced bryophyte diversity. On average enclosures without seed sowing harboured 1.6 times more bryophyte species than the ones with seed sowing (4.2 versus 2.6), indicating competitive effects of vascular plants on bryophytes. Our findings suggest that slugs are important dispersal vectors for bryophytes and that they can increase bryophyte populations and maintain bryophyte diversity by reducing the dominance of vascular plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theory on plant succession predicts a temporal increase in the complexity of spatial community structure and of competitive interactions: initially random occurrences of early colonising species shift towards spatially and competitively structured plant associations in later successional stages. Here we use long-term data on early plant succession in a German post mining area to disentangle the importance of random colonisation, habitat filtering, and competition on the temporal and spatial development of plant community structure. We used species co-occurrence analysis and a recently developed method for assessing competitive strength and hierarchies (transitive versus intransitive competitive orders) in multispecies communities. We found that species turnover decreased through time within interaction neighbourhoods, but increased through time outside interaction neighbourhoods. Successional change did not lead to modular community structure. After accounting for species richness effects, the strength of competitive interactions and the proportion of transitive competitive hierarchies increased through time. Although effects of habitat filtering were weak, random colonization and subsequent competitive interactions had strong effects on community structure. Because competitive strength and transitivity were poorly correlated with soil characteristics, there was little evidence for context dependent competitive strength associated with intransitive competitive hierarchies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Janzen–Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-specific moth caterpillar Steniscadia poliophaea, respectively. At a primary forest site, experimental seed additions to gaps – canopy-disturbed areas that enhance seedling growth into saplings – over three years revealed lower survival and seedling recruitment closer to conspecific trees and in higher basal area neighborhoods, as well as reduced subsequent seedling survival and height growth. When we included these Janzen–Connell effects in a spatially explicit individual-based population model, the caterpillar's impact was critical to limiting Swietenia's adult tree density, with a > 10-fold reduction estimated at 300 years. Our research demonstrates the crucial but oft-ignored linkage between Janzen–Connell effects on offspring and population-level consequences for a long-lived, potentially dominant tree species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alien plants provide a unique opportunity to study evolution in novel environments, but relatively little is known about the extent to which they become locally adapted to different environments across their new range. Here, we compare northern and southern populations of the introduced species Senecio squalidus in Britain; S. squalidus has been in southern Britain for approximately 200 years and reached Scotland only about 50 years ago. We conducted common garden experiments at sites in the north and south of the species’ range in Britain. We also conducted glasshouse and growth chamber experiments to test the hypothesis that southern genotypes flower later, are more drought-tolerant, germinate and establish better at warmer temperatures, and are less sensitive to cold stress than their more northern counterparts. Results from the common garden experiments are largely consistent with the hypothesis of rapid adaptive divergence of populations of the species within the introduced range, with genotypes typically showing a home-site advantage. Results from the glasshouse and growth chamber experiments demonstrate adaptive divergence in ability to tolerate drought stress and high temperatures, as well as in phenology. In particular, southern genotypes were more tolerant of dry conditions and high temperatures and they flowered later than northern genotypes. Our results show that rapid local adaptation can occur in alien species, and they have implications for our understanding of the ecological genetics of range expansion of introduced weeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic diversity in plant populations has been shown to affect the species diversity of insects. In grasses, infection with fungal endophytes can also have strong effects on insects, potentially modifying the effects of plant genetic diversity. We manipulated the genetic diversity and endophyte infection of a grass in a field experiment. We show that diversity of primary parasitoids (3rd trophic level) and, especially, secondary parasitoids (4th trophic level) increases with grass genetic diversity while there was no effect of endophyte infection. The increase in insect diversity appeared to be due to a complementarity effect rather than a sampling effect. The higher parasitoid diversity could not be explained by a cascading diversity effect because herbivore diversity was not affected and the same herbivore species were present in all treatments. The effects on the higher trophic levels must therefore be due to a direct response to plant traits or mediated by effects on traits at intermediate trophic levels.