970 resultados para Offset printing
Holographic offset launch for dynamic optimization and characterization of multimode fiber bandwidth
Resumo:
Optimization of the bandwidth of a 2 km 50 μm multimode fiber at 850 nm is investigated theoretically and experimentally by steering a single spot, or two in antiphase spots across the core of the fiber in two dimensions using a ferroelectric liquid-crystal-based spatial light modulator. This method not only allows an optimal offset launch position to be chosen in situ but can also characterize the geometry and position of the core, identify defects, and measure the maximum differential mode delay. Its ability to selectively excite specific mode groups is also of relevance to mode-group division multiplexing. © 2012 IEEE.
Resumo:
The jetting of dilute polymer solutions in drop-on-demand printing is investigated. A quantitative model is presented which predicts three different regimes of behaviour depending upon the jet Weissenberg number Wi and extensibility of the polymer molecules. In regime I (Wi < ½) the polymer chains are relaxed and the fluid behaves in a Newtonian manner. In regime II (½ < Wi < L) where L is the extensibility of the polymer chain the fluid is viscoelastic, but the polymer do not reach their extensibility limit. In regime III (Wi > L) the chains remain fully extended in the thinning ligament. The maximum polymer concentration at which a jet of a certain speed can be formed scales with molecular weight to the power of (1-3ν), (1-6ν) and -2ν in the three regimes respectively, where ν is the solvent quality coefficient. Experimental data obtained with solutions of mono-disperse polystyrene in diethyl phthalate with molecular weights between 24 - 488 kDa, previous numerical simulations of this system, and previously published data for this and another linear polymer in a variety of “good” solvents, all show good agreement with the scaling predictions of the model.
Resumo:
A binary grating on a Spatial Light Modulator generates twin antiphase spots with adjustable positions across the core of a multimode fibre allowing adaptive excitation of antisymmetric mode-groups for improving modal dispersion or modal multiplexing. © 2011 IEEE.
Resumo:
Recent development of solution processable organic semiconductors delineates the emergence of a new generation of air-stable, high performance p- and n-type materials. This makes it indeed possible for printed organic complementary circuits (CMOS) to be used in real applications. The main technical bottleneck for organic CMOS to be adopted as the next generation organic integrated circuit is how to deposit and pattern both p- and n-type semiconductor materials with high resolutions at the same time. It represents a significant technical challenge, especially if it can be done for multiple layers without mask alignment. In this paper, we propose a one-step self-aligned fabrication process which allows the deposition and high resolution patterning of functional layers for both p- and n-channel thin film transistors (TFTs) simultaneously. All the dimensional information of the device components is featured on a single imprinting stamp, and the TFT-channel geometry, electrodes with different work functions, p- and n-type semiconductors and effective gate dimensions can all be accurately defined by one-step imprinting and the subsequent pattern transfer process. As an example, we have demonstrated an organic complementary inverter fabricated by 3D imprinting in combination with inkjet printing and the measured electrical characteristics have validated the feasibility of the novel technique. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Discrete inkspots of very high copper content were produced using inkjet technology. The reagent disproportionates at low temperature to deposit copper on glass. These deposits were shown to be more than 90% copper by weight by electron probe microanalysis and microbeam Rutherford backscatttering spectroscopy.
Resumo:
Jets from drop-on-demand inkjet print-heads consist of a main drop with a trailing filament, which either condenses into the main drop, or breaks up into satellite drops. Filament behaviour is quantitatively similar to that of larger, free symmetrical filamentscan be predicted from the aspect ratio and Ohnesorge number. Symmetrical filaments generated from inkjet print-heads show the same behaviour. A simple model, based on competition between the processes of axial shortening and radial necking, predicts the critical aspect ratio below which the jet condenses into a single drop. The success of this simple criterion supports the underlying physical model. © 2013 American Institute of Physics.
Resumo:
The airflow between the fast-moving substrate and stationary print heads in a web print press may cause print quality issues in high-speed, roll-to-roll printing applications. We have studied the interactions between ink drops and the airflow in the gap between the printhead and substrate, by using an experimental flow channel and high-speed imaging. The results show: 1) the gap airflow is well approximated by a standard Couette flow profile; 2) the effect of gap airflow on the flight paths of main drops and satellites is negligible; and 3) the interaction between the gap airflow and the wakes from the printed ink drops should be investigated as the primary source of aerodynamically- related print quality issues. ©2012 Society for Imaging Science and Technology.
Resumo:
The power-conversion efficiency of solid-state dye-sensitized solar cells can be optimized by reducing the energy offset between the highest occupied molecular orbital (HOMO) levels of dye and hole-transporting material (HTM) to minimize the loss-in-potential. Here, we report a study of three novel HTMs with HOMO levels slightly above and below the one of the commonly used HTM 2,2′,7,7′- tetrakis(N,N-di-p-methoxyphenylamino)-9,9′- spirobifluorene (spiro-OMeTAD) to systematically explore this possibility. Using transient absorption spectroscopy and employing the ruthenium based dye Z907 as sensitizer, it is shown that, despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. We further demonstrate that the design of the HTM has an additional impact on the electronic density of states present at the TiO2 electrode surface and hence influences not only hole- but also electron-transfer from the sensitizer. These results provide insight into the complex influence of the HTM on charge transfer and provide guidance for the molecular design of new materials. © 2013 American Chemical Society.
Resumo:
We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine.