352 resultados para Odes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exact traveling-wave solutions of time-dependent nonlinear inhomogeneous PDEs, describing several model systems in geophysical fluid dynamics, are found. The reduced nonlinear ODEs are treated as systems of linear algebraic equations in the derivatives. A variety of solutions are found, depending on the rank of the algebraic systems. The geophysical systems include acoustic gravity waves, inertial waves, and Rossby waves. The solutions describe waves which are, in general, either periodic or monoclinic. The present approach is compared with the earlier one due to Grundland (1974) for finding exact solutions of inhomogeneous systems of nonlinear PDEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive exact treatment of free surface flows governed by shallow water equations (in sigma variables) is given. Several new families of exact solutions of the governing PDEs are found and are shown to embed the well-known self-similar or traveling wave solutions which themselves are governed by reduced ODEs. The classes of solutions found here are explicit in contrast to those found earlier in an implicit form. The height of the free surface for each family of solutions is found explicitly. For the traveling or simple wave, the free surface is governed by a nonlinear wave equation, but is arbitrary otherwise. For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed; in another case, the free surface is a horizontal plane while the flow underneath is a sine wave. The existence of simple waves on shear flows is analytically proved. The interaction of large amplitude progressive waves with shear flow is also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a time varying wireless fading channel, equalized by an LMS linear equalizer in decision directed mode (DD-LMS-LE). We study how well this equalizer tracks the optimal Wiener equalizer. Initially we study a fixed channel.For a fixed channel, we obtain the existence of DD attractors near the Wiener filter at high SNRs using an ODE (Ordinary Differential Equation) approximating the DD-LMS-LE. We also show, via examples, that the DD attractors may not be close to the Wiener filters at low SNRs. Next we study a time varying fading channel modeled by an Auto-regressive (AR) process of order 2. The DD-LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs. We show via examples that the LMS equalizer ODE show tracks the ODE corresponding to the instantaneous Wiener filter when the SNR is high. This may not happen at low SNRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a time varying wireless fading channel, equalized by an LMS Decision Feedback equalizer (DFE). We study how well this equalizer tracks the optimal MMSEDFE (Wiener) equalizer. We model the channel by an Autoregressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, we show via some examples that the LMS equalizer moves close to the instantaneous Wiener filter after initial transience. We also compare the LMS equalizer with the instantaneous optimal DFE (the commonly used Wiener filter) designed assuming perfect previous decisions and computed using perfect channel estimate (we will call it as IDFE). We show that the LMS equalizer outperforms the IDFE almost all the time after initial transience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a time varying wireless fading channel, equalized by an LMS linear equalizer. We study how well this equalizer tracks the optimal Wiener equalizer. We model the channel by an Auto-regressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, the error between the LMS equalizer and the instantaneous Wiener filter is shown to decay exponentially/polynomially to zero unless the channel is marginally stable in which case the convergence may not hold.Using the same ODEs, we also show that the corresponding Mean Square Error (MSE) converges towards minimum MSE(MMSE) at the same rate for a stable channel. We further show that the difference between the MSE and the MMSE does not explode with time even when the channel is unstable. Finally we obtain an optimum step size for the linear equalizer in terms of the AR parameters, whenever the error decay is exponential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we derive analytical expressions for mass and stiffness functions of transversely vibrating clamped-clamped non-uniform beams under no axial loads, which are isospectral to a given uniform axially loaded beam. Examples of such axially loaded beams are beam columns (compressive axial load) and piano strings (tensile axial load). The Barcilon-Gottlieb transformation is invoked to transform the non-uniform beam equation into the axially loaded uniform beam equation. The coupled ODEs involved in this transformation are solved for two specific cases (pq (z) = k (0) and q = q (0)), and analytical solutions for mass and stiffness are obtained. Examples of beams having a rectangular cross section are shown as a practical application of the analysis. Some non-uniform beams are found whose frequencies are known exactly since uniform axially loaded beams with clamped ends have closed-form solutions. In addition, we show that the tension required in a stiff piano string with hinged ends can be adjusted by changing the mass and stiffness functions of a stiff string, retaining its natural frequencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the study of the nonlinear dynamics of a rotating flexible link modeled as a one dimensional beam, undergoing large deformation and with geometric nonlinearities. The partial differential equation of motion is discretized using a finite element approach to yield four nonlinear, nonautonomous and coupled ordinary differential equations (ODEs). The equations are nondimensionalized using two characteristic velocities-the speed of sound in the material and a velocity associated with the transverse bending vibration of the beam. The method of multiple scales is used to perform a detailed study of the system. A set of four autonomous equations of the first-order are derived considering primary resonances of the external excitation and one-to-one internal resonances between the natural frequencies of the equations. Numerical simulations show that for certain ranges of values of these characteristic velocities, the slow flow equations can exhibit chaotic motions. The numerical simulations and the results are related to a rotating wind turbine blade and the approach can be used for the study of the nonlinear dynamics of a single link flexible manipulator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resumen: Garcilaso de la Vega, siguiendo el canon pedagógico humanista, se constituyó en un poeta que no solo adoptó la tradición de la lírica clásica en la absorción de temas y motivos, sino que también ensayó la composición de odas, a la manera horaciana, en lengua latina. Estas composiciones, regidas por las reglas métricas que se enseñaban en las escuelas de gramática y retórica, conservan la estructura estrófica y la rigurosa alternancia de sílabas breves y largas. El interés filológico en torno de estos poemas, por los cuales Garcilaso fue elogiado por los intelectuales de su época, es tardío ya que en las primeras ediciones de la obra del toledano no aparecen; será a finales del siglo XIX cuando se ponga la mirada sobre ellos y se comprenderá cuál es la importancia del contexto italiano de composición y el compromiso del poeta con lo clásico. Este cruce de imaginarios, que tiene como límite último la producción poética de Garcilaso, puede entenderse como un ejercicio de traducibilidad entre el sentido de un sistema semiótico adoptado, como es en este caso la utilización de la lengua latina, y la posibilidad de decir algo de ello, lo que implica producir significación; asimismo este juego de traspasos enunciativos se completa con la traducción a la lengua española de las odas latinas de Garcilaso. En consecuencia, los objetivos de la presente comunicación están orientados a analizar los dos pasos de la actividad semántica que se opera en toda relación de traducción: en este caso entre la oda a Venus creada por el poeta hispano y la versión de Nemesia Matarrodona Vizcaíno, quien transpone al español el texto garcilasiano en la edición de Sotelo Salas, del año 1976.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integran este número de la revista ponencias presentadas en Studia Hispanica Medievalia VIII : Actas de las X Jornadas Internacionales de Literatura Española Medieval, 2011, y de Homenaje al Quinto Centenario del Cancionero General de Hernando del Castillo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pedro de Andrade Caminha, poeta português, nasceu no Porto em 1520 e morreu em Vila Viçosa em 1589. Apenas em 1791 a Academia das Ciencias reuniu e mandou publicar suas poesias num total de quatro centos e cinquenta e quatro trabalhos. Segundo Inocêncio, ‘a coleção foi feita sobre os manuscritos que separadamente existiam, um na livraria do Convento da Graça de Lisboa, contendo as éclogas, epístolas, odes, epitáfios e algumas elegias, etc.; outro na do Duque de Cadaval, que continha os epitalâmios, epigramas, outras elegias, e duas epístolas; e aproveitaram-se também alguns sonetos e outros pequenos poemas, que andavam sendo impressos desde o tempo do autor, mas incorporados em obras de diversos autores. Deste modo se completou esta primeira e única edição, dirigida pelos cuidados do então secretário da Academia José Correia da Serra, de quem é o prólogo que a precede’