904 resultados para Object-oriented paradigm
The effective use of implicit parallelism through the use of an object-oriented programming language
Resumo:
This thesis explores translating well-written sequential programs in a subset of the Eiffel programming language - without syntactic or semantic extensions - into parallelised programs for execution on a distributed architecture. The main focus is on constructing two object-oriented models: a theoretical self-contained model of concurrency which enables a simplified second model for implementing the compiling process. There is a further presentation of principles that, if followed, maximise the potential levels of parallelism. Model of Concurrency. The concurrency model is designed to be a straightforward target for mapping sequential programs onto, thus making them parallel. It aids the compilation process by providing a high level of abstraction, including a useful model of parallel behaviour which enables easy incorporation of message interchange, locking, and synchronization of objects. Further, the model is sufficient such that a compiler can and has been practically built. Model of Compilation. The compilation-model's structure is based upon an object-oriented view of grammar descriptions and capitalises on both a recursive-descent style of processing and abstract syntax trees to perform the parsing. A composite-object view with an attribute grammar style of processing is used to extract sufficient semantic information for the parallelisation (i.e. code-generation) phase. Programming Principles. The set of principles presented are based upon information hiding, sharing and containment of objects and the dividing up of methods on the basis of a command/query division. When followed, the level of potential parallelism within the presented concurrency model is maximised. Further, these principles naturally arise from good programming practice. Summary. In summary this thesis shows that it is possible to compile well-written programs, written in a subset of Eiffel, into parallel programs without any syntactic additions or semantic alterations to Eiffel: i.e. no parallel primitives are added, and the parallel program is modelled to execute with equivalent semantics to the sequential version. If the programming principles are followed, a parallelised program achieves the maximum level of potential parallelisation within the concurrency model.
Resumo:
The traditional waterfall software life cycle model has several weaknesses. One problem is that a working version of a system is unavailable until a late stage in the development; any omissions and mistakes in the specification undetected until that stage can be costly to maintain. The operational approach which emphasises the construction of executable specifications can help to remedy this problem. An operational specification may be exercised to generate the behaviours of the specified system, thereby serving as a prototype to facilitate early validation of the system's functional requirements. Recent ideas have centred on using an existing operational method such as JSD in the specification phase of object-oriented development. An explicit transformation phase following specification is necessary in this approach because differences in abstractions between the two domains need to be bridged. This research explores an alternative approach of developing an operational specification method specifically for object-oriented development. By incorporating object-oriented concepts in operational specifications, the specifications have the advantage of directly facilitating implementation in an object-oriented language without requiring further significant transformations. In addition, object-oriented concepts can help the developer manage the complexity of the problem domain specification, whilst providing the user with a specification that closely reflects the real world and so the specification and its execution can be readily understood and validated. A graphical notation has been developed for the specification method which can capture the dynamic properties of an object-oriented system. A tool has also been implemented comprising an editor to facilitate the input of specifications, and an interpreter which can execute the specifications and graphically animate the behaviours of the specified systems.
Resumo:
In analysing manufacturing systems, for either design or operational reasons, failure to account for the potentially significant dynamics could produce invalid results. There are many analysis techniques that can be used, however, simulation is unique in its ability to assess detailed, dynamic behaviour. The use of simulation to analyse manufacturing systems would therefore seem appropriate if not essential. Many simulation software products are available but their ease of use and scope of application vary greatly. This is illustrated at one extreme by simulators which offer rapid but limited application whilst at the other simulation languages which are extremely flexible but tedious to code. Given that a typical manufacturing engineer does not posses in depth programming and simulation skills then the use of simulators over simulation languages would seem a more appropriate choice. Whilst simulators offer ease of use their limited functionality may preclude their use in many applications. The construction of current simulators makes it difficult to amend or extend the functionality of the system to meet new challenges. Some simulators could even become obsolete as users, demand modelling functionality that reflects the latest manufacturing system design and operation concepts. This thesis examines the deficiencies in current simulation tools and considers whether they can be overcome by the application of object-oriented principles. Object-oriented techniques have gained in popularity in recent years and are seen as having the potential to overcome any of the problems traditionally associated with software construction. There are a number of key concepts that are exploited in the work described in this thesis: the use of object-oriented techniques to act as a framework for abstracting engineering concepts into a simulation tool and the ability to reuse and extend object-oriented software. It is argued that current object-oriented simulation tools are deficient and that in designing such tools, object -oriented techniques should be used not just for the creation of individual simulation objects but for the creation of the complete software. This results in the ability to construct an easy to use simulator that is not limited by its initial functionality. The thesis presents the design of an object-oriented data driven simulator which can be freely extended. Discussion and work is focused on discrete parts manufacture. The system developed retains the ease of use typical of data driven simulators. Whilst removing any limitation on its potential range of applications. Reference is given to additions made to the simulator by other developers not involved in the original software development. Particular emphasis is put on the requirements of the manufacturing engineer and the need for Ihe engineer to carrv out dynamic evaluations.
Resumo:
Manufacturing planning and control systems are fundamental to the successful operations of a manufacturing organisation. 10 order to improve their business performance, significant investment is made by companies into planning and control systems; however, not all companies realise the benefits sought Many companies continue to suffer from high levels of inventory, shortages, obsolete parts, poor resource utilisation and poor delivery performance. This thesis argues that the fit between the planning and control system and the manufacturing organisation is a crucial element of success. The design of appropriate control systems is, therefore, important. The different approaches to the design of manufacturing planning and control systems are investigated. It is concluded that there is no provision within these design methodologies to properly assess the impact of a proposed design on the manufacturing facility. Consequently, an understanding of how a new (or modified) planning and control system will perform in the context of the complete manufacturing system is unlikely to be gained until after the system has been implemented and is running. There are many modelling techniques available, however discrete-event simulation is unique in its ability to model the complex dynamics inherent in manufacturing systems, of which the planning and control system is an integral component. The existing application of simulation to manufacturing control system issues is limited: although operational issues are addressed, application to the more fundamental design of control systems is rarely, if at all, considered. The lack of a suitable simulation-based modelling tool does not help matters. The requirements of a simulation tool capable of modelling a host of different planning and control systems is presented. It is argued that only through the application of object-oriented principles can these extensive requirements be achieved. This thesis reports on the development of an extensible class library called WBS/Control, which is based on object-oriented principles and discrete-event simulation. The functionality, both current and future, offered by WBS/Control means that different planning and control systems can be modelled: not only the more standard implementations but also hybrid systems and new designs. The flexibility implicit in the development of WBS/Control supports its application to design and operational issues. WBS/Control wholly integrates with an existing manufacturing simulator to provide a more complete modelling environment.
Resumo:
A Case-Based Reasoning (CBR) tool is software that can be used to develop several applications that require cased-based reasoning methodology. CBR shells are kind of application generators with graphical user interface. They can be used by non-programmer users but the extension or integration of new components in these tools is not possible. In this paper we analyzed three CBR object-oriented framework development environments CBR*Tools, CAT-CBR, and JColibri. These frameworks work as open software development environment and facilitate the reuse of their design as well as implementations.
Resumo:
Distributed and/or composite web applications are driven by intercommunication via web services, which employ application-level protocols, such as SOAP. However, these protocols usually rely on the classic HTTP for transportation. HTTP is quite efficient for what it does — delivering web page content, but has never been intended to carry complex web service oriented communication. Today there exist modern protocols that are much better fit for the job. Such a candidate is XMPP. It is an XML-based, asynchronous, open protocol that has built-in security and authentication mechanisms and utilizes a network of federated servers. Sophisticated asynchronous multi-party communication patterns can be established, effectively aiding web service developers. This paper’s purpose is to prove by facts, comparisons, and practical examples that XMPP is not only better suited than HTTP to serve as middleware for web service protocols, but can also contribute to the overall development state of web services.
Resumo:
Красимир Манев, Антон Желязков, Станимир Бойчев - В статията е представена имплементацията на последната фаза на автоматичен генератор на тестови данни за структурно тестване на софтуер, написан на обектно-ориентиран език за програмиране – генерирането на изходен код на тестващия модул. Някои детайли от имплементацията на останалите фази, които са важни за имплементацията на последната фаза, са представени първо. След това е описан и алгоритъмът за генериране на кода на тестващия модул.
Resumo:
In the computer science community, there is considerable debate about the appropriate sequence for introducing object-oriented concepts to novice programmers. Research into novice programming has struggled to identify the critical aspects that would provide a consistently successful approach to teaching introductory object-oriented programming. Starting from the premise that the conceptions of a task determine the type of output from the task, assisting novice programmers to become aware of what the required output should be, may lay a foundation for improving learning. This study adopted a phenomenographic approach. Thirty one practitioners were interviewed about the ways in which they experience object-oriented programming and categories of description and critical aspects were identified. These critical aspects were then used to examine the spaces of learning provided in twenty introductory textbooks. The study uncovered critical aspects that related to the way that practitioners expressed their understanding of an object-oriented program and the influences on their approach to designing programs. The study of the textbooks revealed a large variability in the cover of these critical aspects.
Resumo:
As users continually request additional functionality, software systems will continue to grow in their complexity, as well as in their susceptibility to failures. Particularly for sensitive systems requiring higher levels of reliability, faulty system modules may increase development and maintenance cost. Hence, identifying them early would support the development of reliable systems through improved scheduling and quality control. Research effort to predict software modules likely to contain faults, as a consequence, has been substantial. Although a wide range of fault prediction models have been proposed, we remain far from having reliable tools that can be widely applied to real industrial systems. For projects with known fault histories, numerous research studies show that statistical models can provide reasonable estimates at predicting faulty modules using software metrics. However, as context-specific metrics differ from project to project, the task of predicting across projects is difficult to achieve. Prediction models obtained from one project experience are ineffective in their ability to predict fault-prone modules when applied to other projects. Hence, taking full benefit of the existing work in software development community has been substantially limited. As a step towards solving this problem, in this dissertation we propose a fault prediction approach that exploits existing prediction models, adapting them to improve their ability to predict faulty system modules across different software projects.
Resumo:
Automated information system design and implementation is one of the fastest changing aspects of the hospitality industry. During the past several years nothing has increased the professionalism or improved the productivity within the industry more than the application of computer technology. Intuitive software applications, deemed the first step toward making computers more people-literate, object-oriented programming, intended to more accurately model reality, and wireless communications are expected to play a significant role in future technological advancement.
Resumo:
Large read-only or read-write transactions with a large read set and a small write set constitute an important class of transactions used in such applications as data mining, data warehousing, statistical applications, and report generators. Such transactions are best supported with optimistic concurrency, because locking of large amounts of data for extended periods of time is not an acceptable solution. The abort rate in regular optimistic concurrency algorithms increases exponentially with the size of the transaction. The algorithm proposed in this dissertation solves this problem by using a new transaction scheduling technique that allows a large transaction to commit safely with significantly greater probability that can exceed several orders of magnitude versus regular optimistic concurrency algorithms. A performance simulation study and a formal proof of serializability and external consistency of the proposed algorithm are also presented.^ This dissertation also proposes a new query optimization technique (lazy queries). Lazy Queries is an adaptive query execution scheme which optimizes itself as the query runs. Lazy queries can be used to find an intersection of sub-queries in a very efficient way, which does not require full execution of large sub-queries nor does it require any statistical knowledge about the data.^ An efficient optimistic concurrency control algorithm used in a massively parallel B-tree with variable-length keys is introduced. B-trees with variable-length keys can be effectively used in a variety of database types. In particular, we show how such a B-tree was used in our implementation of a semantic object-oriented DBMS. The concurrency control algorithm uses semantically safe optimistic virtual "locks" that achieve very fine granularity in conflict detection. This algorithm ensures serializability and external consistency by using logical clocks and backward validation of transactional queries. A formal proof of correctness of the proposed algorithm is also presented. ^
Resumo:
MAIDL, André Murbach; CARVILHE, Claudio; MUSICANTE, Martin A. Maude Object-Oriented Action Tool. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2008.
Resumo:
The locative project is in a condition of emergence, an embryonic state in which everything is still up for grabs, a zone of consistency yet to emerge. As an emergent practice locative art, like locative media generally, it is simultaneously opening up new ways of engaging in the world and mapping its own domain. (Drew Hemment, 2004) Artists and scientists have always used whatever emerging technologies existed at their particular time throughout history to push the boundaries of their fields of practice. The use of new technologies or the notion of ‘new’ media is neither particularly new nor novel. Humans are adaptive, evolving and will continue to invent and explore technological innovation. This paper asks the following questions: what role does adaptive and/or intelligent art play in the future of public spaces, and how does this intervention alter the relationship between theory and practice? Does locative or installation-based art reach more people, and does ‘intelligent’ or ‘smart’ art have a larger role to play in the beginning of this century? The speakers will discuss their current collaborative prototype and within the presentation demonstrate how software art has the potential to activate public spaces, and therefore contribute to a change in spatial or locative awareness. It is argued that the role and perhaps even the representation of the audience/viewer is left altered through this intervention. 1. A form of electronic imagery created by a collection of mathematically defined lines and/or curves. 2. An experiential form of art which engages the viewer both from within a specific location and in response to their intentional or unintentional input.
Resumo:
MAIDL, André Murbach; CARVILHE, Claudio; MUSICANTE, Martin A. Maude Object-Oriented Action Tool. Electronic Notes in Theoretical Computer Science. [S.l:s.n], 2008.
Resumo:
Applications are subject of a continuous evolution process with a profound impact on their underlining data model, hence requiring frequent updates in the applications' class structure and database structure as well. This twofold problem, schema evolution and instance adaptation, usually known as database evolution, is addressed in this thesis. Additionally, we address concurrency and error recovery problems with a novel meta-model and its aspect-oriented implementation. Modern object-oriented databases provide features that help programmers deal with object persistence, as well as all related problems such as database evolution, concurrency and error handling. In most systems there are transparent mechanisms to address these problems, nonetheless the database evolution problem still requires some human intervention, which consumes much of programmers' and database administrators' work effort. Earlier research works have demonstrated that aspect-oriented programming (AOP) techniques enable the development of flexible and pluggable systems. In these earlier works, the schema evolution and the instance adaptation problems were addressed as database management concerns. However, none of this research was focused on orthogonal persistent systems. We argue that AOP techniques are well suited to address these problems in orthogonal persistent systems. Regarding the concurrency and error recovery, earlier research showed that only syntactic obliviousness between the base program and aspects is possible. Our meta-model and framework follow an aspect-oriented approach focused on the object-oriented orthogonal persistent context. The proposed meta-model is characterized by its simplicity in order to achieve efficient and transparent database evolution mechanisms. Our meta-model supports multiple versions of a class structure by applying a class versioning strategy. Thus, enabling bidirectional application compatibility among versions of each class structure. That is to say, the database structure can be updated because earlier applications continue to work, as well as later applications that have only known the updated class structure. The specific characteristics of orthogonal persistent systems, as well as a metadata enrichment strategy within the application's source code, complete the inception of the meta-model and have motivated our research work. To test the feasibility of the approach, a prototype was developed. Our prototype is a framework that mediates the interaction between applications and the database, providing them with orthogonal persistence mechanisms. These mechanisms are introduced into applications as an {\it aspect} in the aspect-oriented sense. Objects do not require the extension of any super class, the implementation of an interface nor contain a particular annotation. Parametric type classes are also correctly handled by our framework. However, classes that belong to the programming environment must not be handled as versionable due to restrictions imposed by the Java Virtual Machine. Regarding concurrency support, the framework provides the applications with a multithreaded environment which supports database transactions and error recovery. The framework keeps applications oblivious to the database evolution problem, as well as persistence. Programmers can update the applications' class structure because the framework will produce a new version for it at the database metadata layer. Using our XML based pointcut/advice constructs, the framework's instance adaptation mechanism is extended, hence keeping the framework also oblivious to this problem. The potential developing gains provided by the prototype were benchmarked. In our case study, the results confirm that mechanisms' transparency has positive repercussions on the programmer's productivity, simplifying the entire evolution process at application and database levels. The meta-model itself also was benchmarked in terms of complexity and agility. Compared with other meta-models, it requires less meta-object modifications in each schema evolution step. Other types of tests were carried out in order to validate prototype and meta-model robustness. In order to perform these tests, we used an OO7 small size database due to its data model complexity. Since the developed prototype offers some features that were not observed in other known systems, performance benchmarks were not possible. However, the developed benchmark is now available to perform future performance comparisons with equivalent systems. In order to test our approach in a real world scenario, we developed a proof-of-concept application. This application was developed without any persistence mechanisms. Using our framework and minor changes applied to the application's source code, we added these mechanisms. Furthermore, we tested the application in a schema evolution scenario. This real world experience using our framework showed that applications remains oblivious to persistence and database evolution. In this case study, our framework proved to be a useful tool for programmers and database administrators. Performance issues and the single Java Virtual Machine concurrent model are the major limitations found in the framework.