966 resultados para ORDER ACCURACY APPROXIMATIONS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To classify each stage for a progressing disease such as Alzheimer’s disease is a key issue for the disease prevention and treatment. In this study, we derived structural brain networks from diffusion-weighted MRI using whole-brain tractography since there is growing interest in relating connectivity measures to clinical, cognitive, and genetic data. Relatively little work has usedmachine learning to make inferences about variations in brain networks in the progression of the Alzheimer’s disease. Here we developed a framework to utilize generalized low rank approximations of matrices (GLRAM) and modified linear discrimination analysis for unsupervised feature learning and classification of connectivity matrices. We apply the methods to brain networks derived from DWI scans of 41 people with Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly healthy controls and 221 young healthy controls. Our results show that this new framework can significantly improve classification accuracy when combining multiple datasets; this suggests the value of using data beyond the classification task at hand to model variations in brain connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Groundwater modelling studies rely on an accurate determination of inputs and outputs that make up the water balance. Often there is large uncertainty associated with estimates of recharge and unmetered groundwater use. This can translate to equivalent uncertainty in the forecasting of sustainable yields, impacts of extraction, and susceptibility of groundwater dependent ecosystems. In the case of Coal Seam Gas, it is important to characterise the temporal and special distribution of depressurisation in the reservoir and how this may or may not extend to the adjacent aquifers. A regional groundwater flow model has been developed by the Queensland Government to predict drawdown impacts due to Coal Seam Gas activities in the Surat basin. This groundwater model is undergoing continued refinement and there is currently scope to address some of the key areas of uncertainty including better quantification of groundwater recharge and unmetered groundwater extractions. Research is currently underway to improve the accuracy of estimates of both of these components of the groundwater balance in order to reduce uncertainty in predicted groundwater drawdowns due to CSG activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new type of high-order elements that incorporates the mesh-free Galerkin formulations into the framework of finite element method. Traditional polynomial interpolation is replaced by mesh-free interpolations in the present high-order elements, and the strain smoothing technique is used for integration of the governing equations based on smoothing cells. The properties of high-order elements, which are influenced by the basis function of mesh-free interpolations and boundary nodes, are discussed through numerical examples. It can be found that the basis function has significant influence on the computational accuracy and upper-lower bounds of energy norm, when the strain smoothing technique retains the softening phenomenon. This new type of high-order elements shows good performance when quadratic basis functions are used in the mesh-free interpolations and present elements prove advantageous in adaptive mesh and nodes refinement schemes. Furthermore, it shows less sensitive to the quality of element because it uses the mesh-free interpolations and obeys the Weakened Weak (W2) formulation as introduced in [3, 5].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of papers have appeared on the application of operational methods and in particular the Laplace transform to problems concerning non-linear systems of one kind or other. This, however, has met with only partial success in solving a class of non-linear problems as each approach has some limitations and drawbacks. In this study the approach of Baycura has been extended to certain third-order non-linear systems subjected to non-periodic excitations, as this approximate method combines the advantages of engineering accuracy with ease of application to such problems. Under non-periodic excitations the method provides a procedure for estimating quickly the maximum response amplitude, which is important from the point of view of a designer. Limitations of such a procedure are brought out and the method is illustrated by an example taken from a physical situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional-order derivatives appear in various engineering applications including models for viscoelastic damping. Damping behavior of materials, if modeled using linear, constant coefficient differential equations, cannot include the long memory that fractional-order derivatives require. However, sufficiently great rnicrostructural disorder can lead, statistically, to macroscopic behavior well approximated by fractional order derivatives. The idea has appeared in the physics literature, but may interest an engineering audience. This idea in turn leads to an infinite-dimensional system without memory; a routine Galerkin projection on that infinite-dimensional system leads to a finite dimensional system of ordinary differential equations (ODEs) (integer order) that matches the fractional-order behavior over user-specifiable, but finite, frequency ranges. For extreme frequencies (small or large), the approximation is poor. This is unavoidable, and users interested in such extremes or in the fundamental aspects of true fractional derivatives must take note of it. However, mismatch in extreme frequencies outside the range of interest for a particular model of a real material may have little engineering impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis I examine one commonly used class of methods for the analytic approximation of cellular automata, the so-called local cluster approximations. This class subsumes the well known mean-field and pair approximations, as well as higher order generalizations of these. While a straightforward method known as Bayesian extension exists for constructing cluster approximations of arbitrary order on one-dimensional lattices (and certain other cases), for higher-dimensional systems the construction of approximations beyond the pair level becomes more complicated due to the presence of loops. In this thesis I describe the one-dimensional construction as well as a number of approximations suggested for higher-dimensional lattices, comparing them against a number of consistency criteria that such approximations could be expected to satisfy. I also outline a general variational principle for constructing consistent cluster approximations of arbitrary order with minimal bias, and show that the one-dimensional construction indeed satisfies this principle. Finally, I apply this variational principle to derive a novel consistent expression for symmetric three cell cluster frequencies as estimated from pair frequencies, and use this expression to construct a quantitatively improved pair approximation of the well-known lattice contact process on a hexagonal lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-wave tails, tails-of-tails, and the tail-squared terms. The results are given both for infall from infinity and also for infall from a finite distance. These analytical expressions should be useful for the comparison with the high accuracy numerical relativity results within the limit in which post-Newtonian approximations are valid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider numerical solutions of nonlinear multiterm fractional integrodifferential equations, where the order of the highest derivative is fractional and positive but is otherwise arbitrary. Here, we extend and unify our previous work, where a Galerkin method was developed for efficiently approximating fractional order operators and where elements of the present differential algebraic equation (DAE) formulation were introduced. The DAE system developed here for arbitrary orders of the fractional derivative includes an added block of equations for each fractional order operator, as well as forcing terms arising from nonzero initial conditions. We motivate and explain the structure of the DAE in detail. We explain how nonzero initial conditions should be incorporated within the approximation. We point out that our approach approximates the system and not a specific solution. Consequently, some questions not easily accessible to solvers of initial value problems, such as stability analyses, can be tackled using our approach. Numerical examples show excellent accuracy. DOI: 10.1115/1.4002516]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method based on analysis of a single diffraction pattern is proposed to measure deflections in micro-cantilever (MC) based sensor probes, achieving typical deflection resolutions of 1nm and surface stress changes of 50 mu N/m. The proposed method employs a double MC structure where the deflection of one of the micro-cantilevers relative to the other due to surface stress changes results in a linear shift of intensity maxima of the Fraunhofer diffraction pattern of the transilluminated MC. Measurement of such shifts in the intensity maxima of a particular order along the length of the structure can be done to an accuracy of 0.01mm leading to the proposed sensitivity of deflection measurement in a typical microcantilever. This method can overcome the fundamental measurement sensitivity limit set by diffraction and pointing stability of laser beam in the widely used Optical Beam Deflection method (OBDM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The governing differential equation of the rotating beam reduces to that of a stiff string when the centrifugal force is assumed as constant. The solution of the static homogeneous part of this equation is enhanced with a polynomial term and used in the Rayleighs method. Numerical experiments show better agreement with converged finite element solutions compared to polynomials. Using this as an estimate for the first mode shape, higher mode shape approximations are obtained using Gram-Schmidt orthogonalization. Estimates for the first five natural frequencies of uniform and tapered beams are obtained accurately using a very low order Rayleigh-Ritz approximation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite volume methods traditionally employ dimension by dimension extension of the one-dimensional reconstruction and averaging procedures to achieve spatial discretization of the governing partial differential equations on a structured Cartesian mesh in multiple dimensions. This simple approach based on tensor product stencils introduces an undesirable grid orientation dependence in the computed solution. The resulting anisotropic errors lead to a disparity in the calculations that is most prominent between directions parallel and diagonal to the grid lines. In this work we develop isotropic finite volume discretization schemes which minimize such grid orientation effects in multidimensional calculations by eliminating the directional bias in the lowest order term in the truncation error. Explicit isotropic expressions that relate the cell face averaged line and surface integrals of a function and its derivatives to the given cell area and volume averages are derived in two and three dimensions, respectively. It is found that a family of isotropic approximations with a free parameter can be derived by combining isotropic schemes based on next-nearest and next-next-nearest neighbors in three dimensions. Use of these isotropic expressions alone in a standard finite volume framework, however, is found to be insufficient in enforcing rotational invariance when the flux vector is nonlinear and/or spatially non-uniform. The rotationally invariant terms which lead to a loss of isotropy in such cases are explicitly identified and recast in a differential form. Various forms of flux correction terms which allow for a full recovery of rotational invariance in the lowest order truncation error terms, while preserving the formal order of accuracy and discrete conservation of the original finite volume method, are developed. Numerical tests in two and three dimensions attest the superior directional attributes of the proposed isotropic finite volume method. Prominent anisotropic errors, such as spurious asymmetric distortions on a circular reaction-diffusion wave that feature in the conventional finite volume implementation are effectively suppressed through isotropic finite volume discretization. Furthermore, for a given spatial resolution, a striking improvement in the prediction of kinetic energy decay rate corresponding to a general two-dimensional incompressible flow field is observed with the use of an isotropic finite volume method instead of the conventional discretization. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of computationally efficient and accurate attitude rate estimation algorithm using low-cost commercially available star sensor arrays and processing unit for micro-satellite mission is presented. Our design reduces the computational load of least square (LS)-based rate estimation method while maintaining the same accuracy compared to other rate estimation approaches. Furthermore, rate estimation accuracy is improved by using recently developed fast and accurate second-order sliding mode observer (SOSMO) scheme. It also gives robust estimation in the presence of modeling uncertainties, unknown disturbances, and measurement noise. Simulation study shows that rate estimation accuracy achieved by our LS-based method is comparable with other methods for a typical commercially available star sensor array. The robustness analysis of SOSMO with respect to measurement noise is also presented in this paper. Simulation test bench for a practical scenario of satellite rate estimation uses moment-of-inertia variation and environmental disturbances affecting a typical micro-satellite at 500km circular orbit. Comparison studies of SOSMO with 1-SMO and pseudo-linear Kalman filter show that satisfactory estimation accuracy is achieved by SOSMO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For solving complex flow field with multi-scale structure higher order accurate schemes are preferred. Among high order schemes the compact schemes have higher resolving efficiency. When the compact and upwind compact schemes are used to solve aerodynamic problems there are numerical oscillations near the shocks. The reason of oscillation production is because of non-uniform group velocity of wave packets in numerical solutions. For improvement of resolution of the shock a parameter function is introduced in compact scheme to control the group velocity. The newly developed method is simple. It has higher accuracy and less stencil of grid points.