370 resultados para OPTIMALITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new iterative algorithm based on the inexact-restoration (IR) approach combined with the filter strategy to solve nonlinear constrained optimization problems is presented. The high level algorithm is suggested by Gonzaga et al. (SIAM J. Optim. 14:646–669, 2003) but not yet implement—the internal algorithms are not proposed. The filter, a new concept introduced by Fletcher and Leyffer (Math. Program. Ser. A 91:239–269, 2002), replaces the merit function avoiding the penalty parameter estimation and the difficulties related to the nondifferentiability. In the IR approach two independent phases are performed in each iteration, the feasibility and the optimality phases. The line search filter is combined with the first one phase to generate a “more feasible” point, and then it is used in the optimality phase to reach an “optimal” point. Numerical experiences with a collection of AMPL problems and a performance comparison with IPOPT are provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação submetida para a obtenção do grau de Doutor em Engenharia Electrotécnica e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Combinatorial Optimization Problems occur in a wide variety of contexts and generally are NP-hard problems. At a corporate level solving this problems is of great importance since they contribute to the optimization of operational costs. In this thesis we propose to solve the Public Transport Bus Assignment problem considering an heterogeneous fleet and line exchanges, a variant of the Multi-Depot Vehicle Scheduling Problem in which additional constraints are enforced to model a real life scenario. The number of constraints involved and the large number of variables makes impracticable solving to optimality using complete search techniques. Therefore, we explore metaheuristics, that sacrifice optimality to produce solutions in feasible time. More concretely, we focus on the development of algorithms based on a sophisticated metaheuristic, Ant-Colony Optimization (ACO), which is based on a stochastic learning mechanism. For complex problems with a considerable number of constraints, sophisticated metaheuristics may fail to produce quality solutions in a reasonable amount of time. Thus, we developed parallel shared-memory (SM) synchronous ACO algorithms, however, synchronism originates the straggler problem. Therefore, we proposed three SM asynchronous algorithms that break the original algorithm semantics and differ on the degree of concurrency allowed while manipulating the learned information. Our results show that our sequential ACO algorithms produced better solutions than a Restarts metaheuristic, the ACO algorithms were able to learn and better solutions were achieved by increasing the amount of cooperation (number of search agents). Regarding parallel algorithms, our asynchronous ACO algorithms outperformed synchronous ones in terms of speedup and solution quality, achieving speedups of 17.6x. The cooperation scheme imposed by asynchronism also achieved a better learning rate than the original one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Construção e Reabilitação Sustentáveis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Industrial e de Sistemas (PDEIS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Programa Doutoral em Engenharia Industrial e de Sistemas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The artificial fish swarm algorithm has recently been emerged in continuous global optimization. It uses points of a population in space to identify the position of fish in the school. Many real-world optimization problems are described by 0-1 multidimensional knapsack problems that are NP-hard. In the last decades several exact as well as heuristic methods have been proposed for solving these problems. In this paper, a new simpli ed binary version of the artificial fish swarm algorithm is presented, where a point/ fish is represented by a binary string of 0/1 bits. Trial points are created by using crossover and mutation in the different fi sh behavior that are randomly selected by using two user de ned probability values. In order to make the points feasible the presented algorithm uses a random heuristic drop item procedure followed by an add item procedure aiming to increase the profit throughout the adding of more items in the knapsack. A cyclic reinitialization of 50% of the population, and a simple local search that allows the progress of a small percentage of points towards optimality and after that refines the best point in the population greatly improve the quality of the solutions. The presented method is tested on a set of benchmark instances and a comparison with other methods available in literature is shown. The comparison shows that the proposed method can be an alternative method for solving these problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of allocating an infinitely divisible commodity among a group of agents with single-peaked preferences. A rule that has played a central role in the analysis of the problem is the so-called uniform rule. Chun (2001) proves that the uniform rule is the only rule satisfying Pareto optimality, no-envy, separability, and continuity (with respect to the social endowment). We obtain an alternative characterization by using a weak replication-invariance condition, called duplication-invariance, instead of continuity. Furthermore, we prove that Pareto optimality, equal division lower bound, and separability imply no-envy. Using this result, we strengthen one of Chun's (2001) characterizations of the uniform rule by showing that the uniform rule is the only rule satisfying Pareto optimality, equal división lower bound, separability, and either continuity or duplication-invariance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report is an extension and partial update of de la Fuente and Ciccone (2002). It constructs estimates of the private and social rates of return on schooling for fourteen EU countries using microeconometric estimates of Mincerian wage equations, the results of cross-country growth regressions and OECD data on educational expenditures, tax rates and social benefits. The results are used to draw some tentative conclusions regarding the optimality of observed investment patterns and educational subsidy levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study markets where the characteristics or decisions of certain agents are relevant but not known to their trading partners. Assuming exclusive transactions, the environment is described as a continuum economy with indivisible commodities. We characterize incentive efficient allocations as solutions to linear programming problems and appeal to duality theory to demonstrate the generic existence of external effects in these markets. Because under certain conditions such effects may generate non-convexities, randomization emerges as a theoretic possibility. In characterizing market equilibria we show that, consistently with the personalized nature of transactions, prices are generally non-linear in the underlying consumption. On the other hand, external effects may have critical implications for market efficiency. With adverse selection, in fact, cross-subsidization across agents with different private information may be necessary for optimality, and so, the market need not even achieve an incentive efficient allocation. In contrast, for the case of a single commodity, we find that when informational asymmetries arise after the trading period (e.g. moral hazard; ex post hidden types) external effects are fully internalized at a market equilibrium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kriging is an interpolation technique whose optimality criteria are based on normality assumptions either for observed or for transformed data. This is the case of normal, lognormal and multigaussian kriging.When kriging is applied to transformed scores, optimality of obtained estimators becomes a cumbersome concept: back-transformed optimal interpolations in transformed scores are not optimal in the original sample space, and vice-versa. This lack of compatible criteria of optimality induces a variety of problems in both point and block estimates. For instance, lognormal kriging, widely used to interpolate positivevariables, has no straightforward way to build consistent and optimal confidence intervals for estimates.These problems are ultimately linked to the assumed space structure of the data support: for instance, positive values, when modelled with lognormal distributions, are assumed to be embedded in the whole real space, with the usual real space structure and Lebesgue measure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the optimality in L2 of a variant of the Incomplete Discontinuous Galerkin Interior Penalty method (IIPG) for second order linear elliptic problems. We prove optimal estimate, in two and three dimensions, for the lowest order case under suitable regularity assumptions on the data and on the mesh. We also provide numerical evidence, in one dimension, of the necessity of the regularity assumptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a multigrid preconditioner for solving the linear system arising from the piecewise linear nonconforming Crouzeix-Raviart discretization of second order elliptic problems with jump coe fficients. The preconditioner uses the standard conforming subspaces as coarse spaces. Numerical tests show both robustness with respect to the jump in the coe fficient and near-optimality with respect to the number of degrees of freedom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new graph-based construction of generalized low density codes (GLD-Tanner) with binary BCH constituents is described. The proposed family of GLD codes is optimal on block erasure channels and quasi-optimal on block fading channels. Optimality is considered in the outage probability sense. Aclassical GLD code for ergodic channels (e.g., the AWGN channel,the i.i.d. Rayleigh fading channel, and the i.i.d. binary erasure channel) is built by connecting bitnodes and subcode nodes via a unique random edge permutation. In the proposed construction of full-diversity GLD codes (referred to as root GLD), bitnodes are divided into 4 classes, subcodes are divided into 2 classes, and finally both sides of the Tanner graph are linked via 4 random edge permutations. The study focuses on non-ergodic channels with two states and can be easily extended to channels with 3 states or more.