969 resultados para OPTICAL MEDIA


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communica- tions and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effcts. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study ofthe optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Angiographic evidence of edge dissections has been associated with a risk of early stent thrombosis. Optical coherence tomography (OCT) is a high-resolution technology detecting a greater number of edge dissections -particularly non-flow-limiting- compared to angiography. Their natural history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. Methods and results: Edge dissections were defined as disruptions of the luminal surface in the 5 mm segments proximal and distal to the stent, and categorised as flaps, cavities, double-lumen dissections or fissures. Qualitative and quantitative OCT analyses were performed every 0.5 mm at baseline and one year, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases. The median longitudinal dissection length was 2.9 mm (interquartile range [IQR] 1.6-4.2 mm), whereas the circumferential and axial extensions amounted to 1.2 mm (IQR: 0.9-1.7 mm) and 0.6 mm (IQR: 0.4-0.7 mm), respectively. Dissections extended into the media and adventitia in seven (33%) and four (20%) cases, respectively. Eighteen (82%) OCT-detected edge dissections were also evaluated with intravascular ultrasound which identified nine (50%) of these OCT-detected dissections. No stent thrombosis or target lesion revascularisation occurred up to one year. At follow-up, 20 (90%) edge dissections were completely healed on OCT. The two cases exhibiting persistent dissection had the longest flaps (2.81 mm and 2.42 mm) at baseline. Conclusions: OCT-detected edge dissections which are angiographically silent in the majority of cases are not associated with acute stent thrombosis or restenosis up to one-year follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As reported previously, an interface between linear and liquid crystal media shows some nonlinear properties that can be employed in the analysis of this type of optical bistable device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to detect, characterize, and manipulate specific biomolecules in complex media is critical for understanding metabolic processes. Particularly important targets are oxygenases (cytochromes P450) involved in drug metabolism and many disease states, including liver and kidney dysfunction, neurological disorders, and cancer. We have found that Ru photosensitizers linked to P450 substrates specifically recognize submicromolar cytochrome P450cam in the presence of other heme proteins. In the P450:Ru-substrate conjugates, energy transfer to the heme dramatically accelerates the Ru-luminescence decay. The crystal structure of a P450cam:Ru-adamantyl complex reveals access to the active center via a channel whose depth (Ru-Fe distance is 21 Å) is virtually the same as that extracted from an analysis of the energy-transfer kinetics. Suitably constructed libraries of sensitizer-linked substrates could be employed to probe the steric and electronic properties of buried active sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent progress is emerging on nondiffracting subwavelength fields propagating in complex plasmonic nanostructures. In this paper, we present a thorough discussion on diffraction-free localized solutions of Maxwell’s equations in a periodic structure composed of nanowires. This self-focusing mechanism differs from others previously reported, which lie on regimes with ultraflat spatial dispersion. By means of the Maxwell–Garnett model, we provide a general analytical expression of the electromagnetic fields that can propagate along the direction of the cylinder’s axis, keeping its transverse waveform unaltered. Numerical simulations based on the finite element method support our analytical approach. In particular, moderate filling fractions of the metallic composite lead to nonresonant-plasmonic spots of light propagating with a size that remains far below the limit of diffraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A great deal of attention has recently been focused on a new class of smart materials-so-called left-handed media-that exhibit highly unusual electromagnetic properties and promise new device applications. Left-handed materials require negative permeability ν, an extreme condition that has so far been achieved only for frequencies in the microwave to terahertz range. Extension of the approach described in ref. 7 to achieve the necessary high-frequency magnetic response in visible optics presents a formidable challenge, as no material-natural or artificial-is known to exhibit any magnetism at these frequencies. Here we report a nanofabricated medium consisting of electromagnetically coupled pairs of gold dots with geometry carefully designed at a 10-nm level. The medium exhibits a strong magnetic response at visible-light frequencies, including a band with negative ν. The magnetism arises owing to the excitation of an antisymmetric plasmon resonance. The high-frequency permeability qualitatively reveals itself via optical impedance matching. Our results demonstrate the feasibility of engineering magnetism at visible frequencies and pave the way towards magnetic and left-handed components for visible optics. © 2005 Nature Publishing Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A new commercially available optical low coherence reflectometry device (Lenstar, Haag-Streit or Allegro Biograph, Wavelight) provides high-resolution non-contact measurements of ocular biometry. The study evaluates the validity and repeatability of these measurements compared with current clinical instrumentation. Method: Measurements were taken with the LenStar and IOLMaster on 112 patients aged 41–96 years listed for cataract surgery. A subgroup of 21 patients also had A-scan applanation ultrasonography (OcuScan) performed. Intersession repeatability of the LenStar measurements was assessed on 32 patients Results: LenStar measurements of white-to-white were similar to the IOLMaster (average difference 0.06 (SD 0.03) D; p?=?0.305); corneal curvature measurements were similar to the IOLMaster (average difference -0.04 (0.20) D; p?=?0.240); anterior chamber depth measurements were significantly longer than the IOLMaster (by 0.10 (0.40) mm) and ultrasound (by 0.32 (0.62) mm; p<0.001); crystalline lens thickness measurements were similar to ultrasound (difference 0.16 (0.83) mm, p?=?0.382); axial length measurements were significantly longer than the IOLMaster (by 0.01 (0.02) mm) but shorter than ultrasound (by 0.14 (0.15) mm; p<0.001). The LensStar was unable to take measurements due to dense media opacities in a similar number of patients to the IOLMaster (9–10%). The LenStar biometric measurements were found to be highly repeatable (variability =2% of average value). Conclusions: Although there were some statistical differences between ocular biometry measurements between the LenStar and current clinical instruments, they were not clinically significant. LenStar measurements were highly repeatable and the instrument easy to use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider non-degenerate two-wave mixing in photorefractive Bi12SiO20. It is shown theoretically that the presence of absorption and optical activity in the photorefractive media may result in a number of maxima for the gain as the frequency detuning between the two beams is varied. Further, when the beam interaction is used for optical amplification, there may also exist an optimum crystal length beyond which there is a reduction in the useful gain obtainable. Experimental results are presented in confirmation of the theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel kind of Airy-based pulse with an invariant propagation in lossy dispersive media is proposed. The basic principle is based on an optical energy trade-off between different parts of the pulse caused by the chromatic dispersion, which is used to compensate the attenuation losses of the propagation medium. Although the ideal concept of the proposed pulses implies infinite pulse energy, the numerical simulations show that practical finite energy pulses can be designed to obtain a partially invariant propagation over a finite distance of propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a saturable absorber (SA) device consisting on an in-fiber micro-slot inscribed by femtosecond laser micro fabrication, filled by a dispersion of Carbon Nanotubes (CNT). Due to the flexibility of the fabrication method, efficient and simple integration of the mode-locking device directly into the optical fiber is achieved. Furthermore, the fabrication process offers a high level of control over the dimensions and location of the micro-slots. We apply this fabrication flexibility to extend the interaction length between the CNT and the propagating optical field along the optical fiber, hence enhancing the nonlinearity of the device. Furthermore, the method allows the fabrication of devices that operate by either a direct field interaction (when the central peak of the propagating optical mode passes through the nonlinear media) or an evanescent field interaction (only a fraction of the optical mode interacts with the CNT). In this paper, several devices with different interaction lengths and interaction regimes are investigated. Self-starting passively modelocked laser operation with an enhanced nonlinear interaction is observed using CNT-based SAs in both interaction regimes. This method constitutes a simple and suitable approach to integrate the CNT into the optical system as well as enhancing the optical nonlinearity of CNT-based photonic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a non-invasive three-dimensional imaging system that is capable of producing high resolution in-vivo images. OCT is approved for use in clinical trials in Japan, USA and Europe. For OCT to be used effectively in a clinical diagnosis, a method of standardisation is required to assess the performance across different systems. This standardisation can be implemented using highly accurate and reproducible artefacts for calibration at both installation and throughout the lifetime of a system. Femtosecond lasers can write highly reproducible and highly localised micro-structured calibration artefacts within a transparent media. We report on the fabrication of high quality OCT calibration artefacts in fused silica using a femtosecond laser. The calibration artefacts were written in fused silica due to its high purity and ability to withstand high energy femtosecond pulses. An Amplitude Systemes s-Pulse Yb:YAG femtosecond laser with an operating wavelength of 1026 nm was used to inscribe three dimensional patterns within the highly optically transmissive substrate. Four unique artefacts have been designed to measure a wide variety of parameters, including the points spread function (PSF), modulation transfer function (MTF), sensitivity, distortion and resolution - key parameters which define the performance of the OCT. The calibration artefacts have been characterised using an optical microscope and tested on a swept source OCT. The results demonstrate that the femtosecond laser inscribed artefacts have the potential of quantitatively and qualitatively validating the performance of any OCT system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.