976 resultados para OCT-1 ACTIVITY


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Consistent with findings of Wnt pathway members involved in vascular cells, a role for Wnt/Frizzled signaling has recently emerged in vascular cell development. Among the few Wnt family members implicated in vessel formation in adult, Wnt7b and Frizzled 4 have been shown as involved in vessel formation in the lung and in the retina, respectively. Our previous work has shown a role for secreted Frizzled-related protein-1 (sFRP-1), a proposed Wnt signaling inhibitor, in neovascularization after an ischemic event and demonstrated its role as a potent angiogenic factor. However the mechanisms involved have not been investigated. Here, we show that sFRP-1 treatment increases endothelial cell spreading on extracellular matrix as revealed by actin stress fiber reorganization in an integrin-dependent manner. We demonstrate that sFRP-1 can interact with Wnt receptors Frizzled 4 and 7 on endothelial cells to transduce downstream to cellular machineries requiring Rac-1 activity in cooperation with GSK-3beta. sFRP-1 overexpression in endothelium specifically reversed the inactivation of GSK-3 beta and increased neovascularization in ischemia-induced angiogenesis in mouse hindlimb. This study illustrates a regulated pathway by sFRP-1 involving GSK-3beta and Rac-1 in endothelial cell cytoskeletal reorganization and in neovessel formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli (EHEC) are the causative agent of hemolytic-uremic syndrome. In the first stage of the infection, EHEC interact with human enterocytes to modulate the innate immune response. Inducible NO synthase (iNOS)-derived NO is a critical mediator of the inflammatory response of the infected intestinal mucosa. We therefore aimed to analyze the role of EHEC on iNOS induction in human epithelial cell lines. In this regard, we show that EHEC down-regulate IFN-gamma-induced iNOS mRNA expression and NO production in Hct-8, Caco-2, and T84 cells. This inhibitory effect occurs through the decrease of STAT-1 activation. In parallel, we demonstrate that EHEC stimulate the rapid inducible expression of the gene hmox-1 that encodes for the enzyme heme oxygenase-1 (HO-1). Knock-down of hmox-1 gene expression by small interfering RNA or the blockade of HO-1 activity by zinc protoporphyrin IX abrogated the EHEC-dependent inhibition of STAT-1 activation and iNOS mRNA expression in activated human enterocytes. These results highlight a new strategy elaborated by EHEC to control the host innate immune response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1alpha and HIF-2alpha, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1alpha or HIF-2alpha by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Increased circulating cortisol levels have been associated with severity of atherosclerosis. Low-grade systemic thrombogenicity plays a major role in the initiation and progression of coronary disease. We hypothesized a direct relationship between cortisol and hemostasis factors related to a prothrombotic state in coronary artery disease. METHODS: We measured morning serum cortisol and activated clotting factor VII, fibrinogen, von Willebrand factor antigen, and plasminogen activator inhibitor-1 activity in 285 women (56 +/- 7 years) between 3 and 6 months after an acute coronary event. To test whether the relationship between cortisol and hemostasis factors would be independent, statistical adjustment was made for demographic, biomedical, life style, and psychosocial variables. RESULTS: Higher serum cortisol levels predicted higher fibrinogen (beta = .17, P = .001) and higher von Willebrand factor (beta = .16, P = .008), all independently of covariates, including C-reactive protein, which was also an independent predictor of fibrinogen (beta = .20, P = .001) and von Willebrand factor (beta = .16, P = .004). Higher levels of vital exhaustion were associated with higher levels of activated clotting factor VII independently of covariates and depression (beta = .18, P = .045). Cortisol showed crude correlations with vital exhaustion (r = .14, P = .022) and with depression (r = .13, P = .043) but did not mediate the relationship between psychosocial variables and hemostatic factors. CONCLUSIONS: Morning serum cortisol showed a modest but independent association with prothrombotic activity in women with coronary artery disease suggesting that increased cortisol levels might contribute to atherosclerosis via eliciting a hypercoagulable state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The link between decreased heart rate variability (HRV) and atherosclerosis progression is elusive. We hypothesized that reduced HRV relates to increased levels of prothrombotic factors previously shown to predict coronary risk. METHODS: We studied 257 women (aged 56 +/- 7 years) between 3 and 6 months after an acute coronary event and obtained very low frequency (VLF), low frequency (LF), and high frequency (HF) power, and LF/HF ratio from 24-hour ambulatory ECG recordings. Plasma levels of activated clotting factor VII (FVIIa), fibrinogen, von Willebrand factor antigen (VWF:Ag), and plasminogen activator inhibitor-1 (PAI-1) activity were determined, and their levels were aggregated into a standardized composite index of prothrombotic activity. RESULTS: In bivariate analyses, all HRV indices were inversely correlated with the prothrombotic index explaining between 6% and 14% of the variance (p < 0.001). After controlling for sociodemographic factors, index event, menopausal status, cardiac medication, lifestyle factors, self-rated health, metabolic variables, and heart rate, VLF power, LF power, and HF power explained 2%, 5%, and 3%, respectively, of the variance in the prothrombotic index (p < 0.012). There were also independent relationships between VLF power and PAI-1 activity, between LF power and fibrinogen, VWF:Ag, and PAI-1 activity, between HF power and FVIIa and fibrinogen, and between the LF/HF power ratio and PAI-1 activity, explaining between 2% and 3% of the respective variances (p < 0.05). CONCLUSIONS: Decreased HRV was associated with prothrombotic changes partially independent of covariates. Alteration in autonomic function might contribute to prothrombotic activity in women with coronary artery disease (CAD).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Small benign insulinomas are hard to localise, leading to difficulties in planning of surgical interventions. We aimed to prospectively assess the insulinoma detection rate of single-photon emission CT in combination with CT (SPECT/CT) with a glucagon-like peptide-1 receptor avid radiotracer, and compare detection rates with conventional CT/MRI techniques. METHODS In our prospective imaging study, we enrolled adults aged 25-81 years at centres in Germany, Switzerland, and the UK. Eligible patients had proven clinical and biochemical endogenous hyperinsulinaemic hypoglycaemia and no evidence for metastatic disease on conventional imaging. CT/MRI imaging was done at referring centres according to standard protocols. At three tertiary nuclear medicine centres, we used whole body planar images and SPECT/CT of the abdomen up to 168 h after injection of (111)In-[Lys40(Ahx-DTPA-(111)In)NH2]-exendin-4 ((111)In-DTPA-exendin-4) to identify insulinomas. Consenting patients underwent surgery and imaging findings were confirmed histologically. FINDINGS Between Oct 1, 2008, and Dec 31, 2011, we recruited 30 patients. All patients underwent (111)In-DTPA-exendin-4 imaging, 25 patients underwent surgery (with histological analysis), and 27 patients were assessed with CT/MRI. (111)In-DTPA-exendin-4 SPECT/CT correctly detected 19 insulinomas and four additional positive lesions (two islet-cell hyperplasia and two uncharacterised lesions) resulting in a positive predictive value of 83% (95% CI 62-94). One true negative (islet-cell hyperplasia) and one false negative (malignant insulinoma) result was identified in separate patients by (111)In-DTPA-exendin-4 SPECT/CT. Seven patients (23%) were referred to surgery on the basis of (111)In-DTPA-exendin-4 imaging alone. For 23 assessable patients, (111)In-DTPA-exendin-4 SPECT/CT had a higher sensitivity (95% [95% CI 74-100]) than did CT/MRI (47% [27-68]; p=0·011). INTERPRETATION (111)In-DTPA-exendin-4 SPECT/CT could provide a good second-line imaging strategy for patients with negative results on initial imaging with CT/MRI. FUNDING Oncosuisse, the Swiss National Science Foundation, and UK Department of Health.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Histone gene expression is replication-independent during oogenesis and early embryogenesis in amphibians; however, it becomes replication-dependent during later embryogenesis and remains replication-dependent through adulthood. In order to understand the mechanism for this switch in transcriptional regulation of histone gene expression during amphibian development, linker-scanning mutations were made in a Xenopus laevis H2B histone gene promoter by oligonucleotide site-directed mutagenesis and assayed by microinjection into oocytes and embryos. The Xenopus H2B gene has a relatively simple promoter containing several transcriptional regulatory elements, including TFIID, CCAAT, and ATF motifs, required for maximal transcription in both oocytes and embryos. Factors binding to the CCAAT and ATF motifs are present in oocytes and embryos and increase slightly in abundance during early development. A sequence (CTTTACAT) in the frog H2B promoter resembling the conserved octamer motif (ATTTGCAT), the target for cell-cycle regulation of a human H2B gene, is additionally required for maximal H2B transcription in frog embryos. Oocytes and embryos contain multiple octamer-binding proteins that are expressed in a sequential manner during early development. Sequences encoding three novel octamer-binding proteins were isolated from Xenopus cDNA libraries by virtue of their similarity with the DNA binding (POU) domain of the ubiquitously expressed transcription factor Oct-1. The protein encoded by one of these genes, termed Oct-60, was localized mainly in the cytoplasm of oocytes and was also present in early embryos until the gastrula stage of development. Proteins encoded by the other two genes, Oct-25 and Oct-91, were present in embryos after the mid-blastula stage of development and decreased by early neurula stage. The activity of the Xenopus H2B octamer motif in embryos is not specifically associated with increased binding by Oct-1 or the appearance of novel octamer-binding proteins but requires the presence of an intact CCAAT motif. We found that synergistic interactions among promoter elements are important for full H2B promoter activity. The results suggest that transcription of the Xenopus H2B gene is replication-dependent when it is activated at the mid-blastula stage of development and that replication-dependent H2B transcription is mediated by Oct-1. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interleukin-1β (IL-1β) is a key cytokine involved in inflammatory illnesses including rare hereditary diseases and common chronic inflammatory conditions as gout, rheumatoid arthritis, and type 2 diabetes mellitus, suggesting reduction of IL-1β activity as new treatment strategy. The objective of our study was to assess safety, antibody response, and preliminary efficacy of a novel vaccine against IL-1β. The vaccine hIL1bQb consisting of full-length, recombinant IL-1β coupled to virus-like particles was tested in a preclinical and clinical, randomized, placebo-controlled, double-blind study in patients with type 2 diabetes. The preclinical simian study showed prompt induction of IL-1β-specific antibodies upon vaccination, while neutralizing antibodies appeared with delay. In the clinical study with 48 type 2 diabetic patients, neutralizing IL-1β-specific antibody responses were detectable after six injections with doses of 900 µg. The development of neutralizing antibodies was associated with higher number of study drug injections, lower baseline body mass index, improvement of glycemia, and C-reactive protein (CRP). The vaccine hIL1bQb was safe and well-tolerated with no differences regarding adverse events between patients receiving hIL1bQb compared to placebo. This is the first description of a vaccine against IL-1β and represents a new treatment option for IL-1β-dependent diseases such as type 2 diabetes mellitus (ClinicalTrials.gov NCT00924105).Molecular Therapy (2016); doi:10.1038/mt.2015.227.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sphingosine 1-phosphate (S1P) is generated by sphingosine kinase (SK)-1 and -2 and acts mainly as an extracellular ligand at five specific receptors, denoted S1P1-5. After activation, S1P receptors regulate important processes in the progression of renal diseases, such as mesangial cell migration and survival. Previously, we showed that dexamethasone enhances SK-1 activity and S1P formation, which protected mesangial cells from stress-induced apoptosis. Here we demonstrate that dexamethasone treatment lowered S1P1 mRNA and protein expression levels in rat mesangial cells. This effect was abolished in the presence of the glucocorticoid receptor antagonist RU-486. In addition, in vivo studies showed that dexamethasone downregulated S1P1 expression in glomeruli isolated from mice treated with dexamethasone (10 mg/kg body weight). Functionally, we identified S1P1 as a key player mediating S1P-induced mesangial cell migration. We show that dexamethasone treatment significantly lowered S1P-induced migration of mesangial cells, which was again reversed in the presence of RU-486. In summary, we suggest that dexamethasone inhibits S1P-induced mesangial cell migration via downregulation of S1P1. Overall, these results demonstrate that dexamethasone has functional important effects on sphingolipid metabolism and action in renal mesangial cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The adenovirus type 5 E1A gene was originally developed as a gene therapy to inhibit tumorigenicity of HER-2-overexpressing cells by transcriptional downregulation of HER-2. Our goal is to improve the overall efficacy of E1A gene therapy. To achieve this goal, we have conducted two preclinical experiments. ^ First, we hypothesized that Bcl-2 overexpressing ovarian cancer is resistant to E1A gene therapy. This hypothesis is based on that the 19 kDa protein product of the adenoviral E1B gene which is homologous to Bcl-2 inhibits E1A-induced apoptosis. Treating high Bcl-2-xpressing cells with E1A in combination with an antisense oligonucleotide to Bcl-2 (Bcl-2-ASO) resulted in a significant decrease in cell viability due to an increased rate of apoptosis relative to cells treated with E1A alone. In an ovarian cancer xenograft model, mice implanted with low HER-2, high Bcl-2 cells, treated with E1A plus Bcl-2-ASO led to prolonged survival. Bcl-2 thus may serve as a predictive molecular marker enabling us to select patients with ovarian cancer who will benefit significantly from E1A gene therapy. ^ Second, we elucidated the molecular mechanism governing the anti-tumor effect of E1A in ovarian cancer to identify a more potent tumor suppressor gene. We identified PEA-15 (phospho-protein enriched in astrocytes) upregulated in E1A transfected low HER-2-expressing OVCAR-3 ovarian cancer cell, which showed decreased cell proliferation. PEA-15 moved ERK from the nucleus to the cytoplasm and inhibited ERK-dependent transcription and proliferation. Using small interfering RNA to knock down PEA-15 expression in OVCAR-3 cells made to constitutively express E1A resulted in accumulation of phosphoERK in the nucleus, an increase in Elk-1 activity, DNA synthesis, and anchorage-independent growth. PEA-15 also independently suppressed colony formation in some breast and ovarian cancer cell lines in which E1A is known to have anti-tumor activity. We conclude that the anti-tumor activity of E1A depends on PEA-15. ^ In summary, (1) Bcl-2 may serve as a predictive molecular marker of E1A gene therapy, allowing us to select patients and improve efficacy of E1A gene therapy. (2) PEA-15 was identified as a component of the molecular mechanism governing the anti-tumor activity of E1A in ovarian cancer, (3) PEA-15 may be developed as a novel therapeutic gene. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated OsHKT2;1 natural variation in a collection of 49 cultivars with different levels of salt tolerance and geographical origins. The effect of identified polymorphism on OsHKT2;1 activity was analysed through heterologous expression of variants in Xenopus oocytes. OsHKT2;1 appeared to be a highly conserved protein with only five possible amino acid substitutions that have no substantial effect on functional properties. Our study, however, also identified a new HKT isoform, No-OsHKT2;2/1 in Nona Bokra, a highly salt-tolerant cultivar. No-OsHKT2;2/1 probably originated from a deletion in chromosome 6, producing a chimeric gene. Its 5¢ region corresponds to that of OsHKT2;2, whose full-length sequence is not present in Nipponbare but has been identified in Pokkali, a salt-tolerant rice cultivar. Its 3¢ region corresponds to that of OsHKT2;1. No-OsHKT2;2/1 is essentially expressed in roots and displays a significant level of expression at high Na+ concentrations, in contrast to OsHKT2;1. Expressed in Xenopus oocytes or in Saccharomyces cerevisiae, No-OsHKT2;2/1 exhibited a strong permeability to Na+ and K+, even at high external Na+ concentrations, like OsHKT2;2, and in contrast to OsHKT2;1. Our results suggest that No-OsHKT2;2/1 can contribute to Nona Bokra salt tolerance by enabling root K+ uptake under saline conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solar UV irradiation is the causal factor for the increasing incidence of human skin carcinomas. The activation of the transcription factor activator protein-1 (AP-1) has been shown to be responsible for the tumor promoter action of UV light in mammalian cells. We demonstrate that proteinase inhibitor I (Inh I) and II (Inh II) from potato tubers, when applied to mouse epidermal JB6 cells, block UV-induced AP-1 activation. The inhibition appears to be specific for UV-induced signal transduction for AP-1 activation, because these inhibitors did not block UV-induced p53 activation nor did they exhibit any significant influence on epidermal growth factor-induced AP-1 transactivation. Furthermore, the inhibition of UV-induced AP-1 activity occurs through a pathway that is independent of extracellular signal-regulated kinases and c-Jun N-terminal kinases as well as P38 kinases. Considering the important role of AP-1 in tumor promotion, it is possible that blocking UV-induced AP-1 activity by Inh I or Inh II may be functionally linked to irradiation-induced cell transformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mutant presenilins have been found to cause Alzheimer disease. Here, we describe the identification and characterization of HOP-1, a Caenorhabditis elegans presenilin that displays much more lower sequence identity with human presenilins than does the other C. elegans presenilin, SEL-12. Despite considerable divergence, HOP-1 appears to be a bona fide presenilin, because HOP-1 can rescue the egg-laying defect caused by mutations in sel-12 when hop-1 is expressed under the control of sel-12 regulatory sequences. HOP-1 also has the essential topological characteristics of the other presenilins. Reducing hop-1 activity in a sel-12 mutant background causes synthetic lethality and terminal phenotypes associated with reducing the function of the C. elegans lin-12 and glp-1 genes. These observations suggest that hop-1 is functionally redundant with sel-12 and underscore the intimate connection between presenilin activity and LIN-12/Notch activity inferred from genetic studies in C. elegans and mammals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The enzymes cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) catalyze the conversion of arachidonic acid to prostaglandin (PG) H2, the precursor of PGs and thromboxane. These lipid mediators play important roles in inflammation and pain and in normal physiological functions. While there are abundant data indicating that the inducible isoform, COX-2, is important in inflammation and pain, the constitutively expressed isoform, COX-1, has also been suggested to play a role in inflammatory processes. To address the latter question pharmacologically, we used a highly selective COX-1 inhibitor, SC-560 (COX-1 IC50 = 0.009 μM; COX-2 IC50 = 6.3 μM). SC-560 inhibited COX-1-derived platelet thromboxane B2, gastric PGE2, and dermal PGE2 production, indicating that it was orally active, but did not inhibit COX-2-derived PGs in the lipopolysaccharide-induced rat air pouch. Therapeutic or prophylactic administration of SC-560 in the rat carrageenan footpad model did not affect acute inflammation or hyperalgesia at doses that markedly inhibited in vivo COX-1 activity. By contrast, celecoxib, a selective COX-2 inhibitor, was anti-inflammatory and analgesic in this model. Paradoxically, both SC-560 and celecoxib reduced paw PGs to equivalent levels. Increased levels of PGs were found in the cerebrospinal fluid after carrageenan injection and were markedly reduced by celecoxib, but were not affected by SC-560. These results suggest that, in addition to the role of peripherally produced PGs, there is a critical, centrally mediated neurological component to inflammatory pain that is mediated at least in part by COX-2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lactacystin, a microbial metabolite that inhibits protease activity only in the proteasome, was used to study the role of the proteasome in the activation-induced cell death (AICD) of T cells. Lactacystin induces DNA fragmentation and apoptosis in a T cell hybridoma (DO.11.10) in a dose-dependent manner. Between 1 and 10 μM, the mildly cytotoxic lactacystin inhibited the AICD of DO.11.10 cells cultured in anti-CD3-coated wells. Degradation of IκBβ and the translocation of the NF-κB (p50/RelA) into the nucleus, which occurred at 1.5 hr after anti-CD3 activation, were inhibited by lactacystin. Lactacystin did not inhibit the expression of nuclear transcription factor Oct-1. The activation-induced expression of the immediate–early gene, Nur77, and the T cell death genes, CD95 (Fas) and CD95 ligand (FasL), were inhibited. Functional expression of FasL cytotoxicity and the increase of cell surface Fas were also inhibited. Lactacystin must be added within 2 hr of activation to efficiently block AICD. In addition, lactacystin failed to inhibit the killing of DO.11.10 by FasL-expressing allo-specific cytotoxic effector cells. These observations strongly suggest a direct link between the proteasome-dependent degradation of IκBβ and the AICD that occurs through activation of the FasL gene and up-regulation of the Fas gene.