932 resultados para Numerical surface modeling
Resumo:
Methane hydrate, which is usually found under deep seabed or permafrost zones, is a potential energy resource for future years. Depressurization of horizontal wells bored in methane hydrate layer is considered as one possible method for hydrate dissociation and methane extraction from the hosting soil. Since hydrate is likely to behave as a bonding material to sandy soils, supported well construction is necessary to avoid well-collapse due to the loss of the apparent cohesion during depressurization. This paper describes both physical and numerical modeling of such horizontal support wells. The experimental part involves depressurization of small well models in a large pressure cell, while the numerical part simulates the corresponding problem. While the experiment models simulate only gas saturated initial conditions, the numerical analysis simulates both gas-saturated and more realistic water-saturated conditions based on effective stress coupled flow-deformation formulation of these three phases. © 2006 Taylor & Francis Group.
Resumo:
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
Resumo:
The Earth is very heterogeneous, especially in the region close to the surface of the Earth, and in regions close to the core-mantle boundary (CMB). The lowermost mantle (bottom 300km of the mantle) is the place for fast anomaly (3% faster S velocity than PREM, modeled from Scd), for slow anomaly (-3% slower S velocity than PREM, modeled from S,ScS), for extreme anomalous structure (ultra-low velocity zone, 30% lower inS velocity, 10% lower in P velocity). Strong anomaly with larger dimension is also observed beneath Africa and Pacific, originally modeled from travel time of S, SKS and ScS. Given the heterogeneous nature of the earth, more accurate approach (than travel time) has to be applied to study the details of various anomalous structures, and matching waveform with synthetic seismograms has proven effective in constraining the velocity structures. However, it is difficult to make synthetic seismograms in more than 1D cases where no exact analytical solution is possible. Numerical methods like finite difference or finite elements are too time consuming in modeling body waveforms. We developed a 2D synthetic algorithm, which is extended from 1D generalized ray theory (GRT), to make synthetic seismograms efficiently (each seismogram per minutes). This 2D algorithm is related to WKB approximation, but is based on different principles, it is thus named to be WKM, i.e., WKB modified. WKM has been applied to study the variation of fast D" structure beneath the Caribbean sea, to study the plume beneath Africa. WKM is also applied to study PKP precursors which is a very important seismic phase in modeling lower mantle heterogeneity. By matching WKM synthetic seismograms with various data, we discovered and confirmed that (a) The D" beneath Caribbean varies laterally, and the variation is best revealed with Scd+Sab beyond 88 degree where Sed overruns Sab. (b) The low velocity structure beneath Africa is about 1500 km in height, at least 1000km in width, and features 3% reduced S velocity. The low velocity structure is a combination of a relatively thin, low velocity layer (200 km thick or less) beneath the Atlantic, then rising very sharply into mid mantle towards Africa. (c) At the edges of this huge Africa low velocity structures, ULVZs are found by modeling the large separation between S and ScS beyond 100 degree. The ULVZ to the eastern boundary was discovered with SKPdS data, and later is confirmed by PKP precursor data. This is the first time that ULVZ is verified with distinct seismic phase.
Resumo:
This work seeks to understand past and present surface conditions on the Moon using two different but complementary approaches: topographic analysis using high-resolution elevation data from recent spacecraft missions and forward modeling of the dominant agent of lunar surface modification, impact cratering. The first investigation focuses on global surface roughness of the Moon, using a variety of statistical parameters to explore slopes at different scales and their relation to competing geological processes. We find that highlands topography behaves as a nearly self-similar fractal system on scales of order 100 meters, and there is a distinct change in this behavior above and below approximately 1 km. Chapter 2 focuses this analysis on two localized regions: the lunar south pole, including Shackleton crater, and the large mare-filled basins on the nearside of the Moon. In particular, we find that differential slope, a statistical measure of roughness related to the curvature of a topographic profile, is extremely useful in distinguishing between geologic units. Chapter 3 introduces a numerical model that simulates a cratered terrain by emplacing features of characteristic shape geometrically, allowing for tracking of both the topography and surviving rim fragments over time. The power spectral density of cratered terrains is estimated numerically from model results and benchmarked against a 1-dimensional analytic model. The power spectral slope is observed to vary predictably with the size-frequency distribution of craters, as well as the crater shape. The final chapter employs the rim-tracking feature of the cratered terrain model to analyze the evolving size-frequency distribution of craters under different criteria for identifying "visible" craters from surviving rim fragments. A geometric bias exists that systematically over counts large or small craters, depending on the rim fraction required to count a given feature as either visible or erased.
Resumo:
Progress is made on the numerical modeling of both laminar and turbulent non-premixed flames. Instead of solving the transport equations for the numerous species involved in the combustion process, the present study proposes reduced-order combustion models based on local flame structures.
For laminar non-premixed flames, curvature and multi-dimensional diffusion effects are found critical for the accurate prediction of sooting tendencies. A new numerical model based on modified flamelet equations is proposed. Sooting tendencies are calculated numerically using the proposed model for a wide range of species. These first numerically-computed sooting tendencies are in good agreement with experimental data. To further quantify curvature and multi-dimensional effects, a general flamelet formulation is derived mathematically. A budget analysis of the general flamelet equations is performed on an axisymmetric laminar diffusion flame. A new chemistry tabulation method based on the general flamelet formulation is proposed. This new tabulation method is applied to the same flame and demonstrates significant improvement compared to previous techniques.
For turbulent non-premixed flames, a new model to account for chemistry-turbulence interactions is proposed. %It is found that these interactions are not important for radicals and small species, but substantial for aromatic species. The validity of various existing flamelet-based chemistry tabulation methods is examined, and a new linear relaxation model is proposed for aromatic species. The proposed relaxation model is validated against full chemistry calculations. To further quantify the importance of aromatic chemistry-turbulence interactions, Large-Eddy Simulations (LES) have been performed on a turbulent sooting jet flame. %The aforementioned relaxation model is used to provide closure for the chemical source terms of transported aromatic species. The effects of turbulent unsteadiness on soot are highlighted by comparing the LES results with a separate LES using fully-tabulated chemistry. It is shown that turbulent unsteady effects are of critical importance for the accurate prediction of not only the inception locations, but also the magnitude and fluctuations of soot.
Tyre/road interaction noise - numerical noise prediction of a patterned tyre on a rough road surface
Resumo:
It is demonstrated with powerful evidence that the extraordinary transmission of a metallic grating is undoubtedly due to the excitation of standing surface plasma waves in the Fabry-Perot like resonator. This is the first time that the strong standing waves set up in the groove of a sub-wavelength double-layer grating (SWDG) for the surface plasma waves have been reported. Moreover, about 90% transmission is gained with an SWDG, more easily fabricated than ordinary metallic gratings, in the first peak of transmission spectrum.